Detecting plumes in mobile air quality monitoring time series with density-based spatial clustering of applications with noise

Author:

Actkinson BlakeORCID,Griffin Robert J.

Abstract

Abstract. Mobile monitoring is becoming an increasingly popular technique to assess air pollution on fine spatial scales, but methods to determine specific source contributions to measured pollutants are sorely needed. One approach is to isolate plumes from mobile monitoring time series and analyze them separately, but methods that are suitable for large mobile monitoring time series are lacking. Here we discuss a novel method used to detect and isolate plumes from an extensive mobile monitoring data set. The new method relies on density-based spatial clustering of applications with noise (DBSCAN), an unsupervised machine learning technique. The new method systematically runs DBSCAN on mobile monitoring time series by day and identifies a subset of points as anomalies for further analysis. When applied to a mobile monitoring data set collected in Houston, Texas, analyzed anomalies reveal patterns associated with different types of vehicle emission profiles. We observe spatial differences in these patterns and reveal striking disparities by census tract. These results can be used to inform stakeholders of spatial variations in emission profiles not obvious using data from stationary monitors alone.

Funder

National Institute of Environmental Health Sciences

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference39 articles.

1. Actkinson, B.: bactkinson/Anomaly_Analysis: AMT Preprint Submission (AMT), Zenodo [code], https://doi.org/10.5281/zenodo.7700290, 2023a.

2. Actkinson, B.: bactkinson/Plume_Detection_with_DBSCAN: Plume Detection with DBSCAN – R Shiny App (AMT), Zenodo [code], https://doi.org/10.5281/zenodo.7700300, 2023b.

3. Actkinson, B.: DBSCAN Plume Detection Tool, shinyapps.io [code], https://bactkinson.shinyapps.io/plume_detection_with_dbscan/ (last access: 6 March 2023), 2023c.

4. Actkinson, B. and Griffin, R.: Datasets used in Detecting Plumes in Mobile Air Quality Monitoring Time Series with Density-based Spatial Clustering of Applications with Noise v01, Zenodo [data set], https://doi.org/10.5281/zenodo.6473859​​​​​​​, 2022​​​​​​​.

5. Actkinson, B., Ensor, K., and Griffin, R. J.: SIBaR: a new method for background quantification and removal from mobile air pollution measurements, Atmos. Meas. Tech., 14, 5809–5821, https://doi.org/10.5194/amt-14-5809-2021, 2021.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3