Carbon monoxide mixing ratios over Oklahoma between 2002 and 2009 retrieved from Atmospheric Emitted Radiance Interferometer spectra

Author:

Yurganov L.,McMillan W.,Wilson C.,Fischer M.,Biraud S.

Abstract

Abstract. CO mixing ratios weighted over the bottom 2-km thick atmospheric layer between 2002 and 2009 were retrieved from downwelling infrared (IR) radiance spectra of the clear sky measured by a zenith-viewing Atmospheric Emitted Radiance Interferometer (AERI) deployed at the Southern Great Plains (SGP) observatory of the Atmospheric Radiation Measurements (ARM) Program near Lamont, Oklahoma. A version of the algorithm proposed by He at al. (2001) was significantly improved and validated. Essentially, the new algorithm retrieves a CO mixing ratio that is determined by the convolution of the a priori profile (assumed to be constant with altitude), the true profile, and the averaging kernel which maximizes near the surface. Approximately 70% of the CO signal comes from the boundary layer and the remaining 30% come from the lower part of the free troposphere. Archived temperature and water vapor profiles retrieved from the same AERI spectra through automated ARM processing were used as input data for the CO retrievals. We found the archived water vapor profiles required additional constraint using SGP Microwave Radiometer retrievals of total precipitable water vapor. Additionally, a correction for scattered solar light was developed. The retrieved CO was validated using simultaneous independently measured CO profiles. An aircraft supplied in situ CO measurements at altitudes up to 4572 m above sea level once or twice a week between March 2006 and December 2008. The aircraft measurements were supplemented with ground-based CO measurements at the SGP and retrievals from the Atmospheric IR Sounder (AIRS) above 5 km to create full tropospheric CO profiles. Comparison of the convolved profiles to the AERI CO retrievals found a squared correlation coefficient of 0.57, a standard deviation of ±11.7 ppbv, a bias of 16 ppbv, and a slope of 0.92. Averaged seasonal and diurnal cycles measured by AERI are compared with those measured continuously in situ at the SGP in the boundary layer. Monthly mean CO values measured by AERI between 2002 and 2009 are compared with those measured by AIRS over North America, the Northern Hemisphere mid-latitudes, and over the tropics.

Publisher

Copernicus GmbH

Reference58 articles.

1. ACRF: Annual Report 2008, DOE/SC-ARM-0805, http://www.arm.gov/publications/programdocs/doe-sc-arm-0805.pdf, 2008.

2. Backus, G. E. and Gilbert, J. F.: Uniqueness in the inversion of gross earth data, Phil. Trans. R. Soc., 266, 123–192, 1970.

3. Bergamaschi, P., Hein, R., Heimann, M., Crutzen, P. J.: Inverse modeling of the global CO cycle, 1, Inversion of CO mixing ratios , J. Geophys. Res., 105(D2), p. 1909 (1999JD900818), 2000.

4. Biraud, S. C., Torn, M., Riley, W. J., et al.: Regional Carbon Fluxes and Atmospheric Carbon Dynamics in the Southern Great Plains during the 2007 CLASIC intensive, Eos Trans. AGU, 88(52), Fall Meet. Suppl., Abstract B43D-1595, 2007.

5. Buchwitz, M., de Beek, R., Bramstedt, K., Noël, S., Bovensmann, H., and Burrows, J. P.: Global carbon monoxide as retrieved from SCIAMACHY by WFM-DOAS, Atmos. Chem. Phys., 4, 1945–1960, 2004.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3