Wildfire smoke in the Siberian Arctic in summer: source characterization and plume evolution from airborne measurements

Author:

Paris J.-D.,Stohl A.,Nédélec P.,Arshinov M. Yu.,Panchenko M. V.,Shmargunov V. P.,Law K. S.,Belan B. D.,Ciais P.

Abstract

Abstract. We present airborne measurements of carbon dioxide (CO2), carbon monoxide (CO), ozone (O3), equivalent black carbon (EBC) and ultra fine particles over North-Eastern Siberia in July 2008 performed during the YAK-AEROSIB/POLARCAT experiment. During a "golden day" (11 July 2008) a number of biomass burning plumes were encountered with CO mixing ratio enhancements of up to 500 ppb relative to a background of 90 ppb. Number concentrations of aerosols in the size range 3.5–200 nm peaked at 4000 cm−3 and the EBC content reached 1.4 μg m−3. These high concentrations were caused by forest fires in the vicinity of the landing airport in Yakutsk where measurements in fresh smoke could be made during the descent. We estimate a combustion efficiency of 90 ± 3% based on CO and CO2 measurements and a CO emission factor of 65.5 ± 10.8 g CO per kilogram of dry matter burned. This suggests a potential increase in the average northern hemispheric CO mixing ratio of 3.0–7.2 ppb per million hectares of Siberian forest burned. For BC, we estimate an emission factor of 0.52 ± 0.07 g BC kg−1, comparable to values reported in the literature. The emission ratio of ultra-fine particles (3.5–200 nm) was 26 cm−3 (ppb CO)−1, consistent with other airborne studies. The transport of identified biomass burning plumes was investigated using the FLEXPART Lagrangian model. Based on sampling of wildfire plumes from the same source but with different atmospheric ages derived from FLEXPART, we estimate that the e-folding lifetimes of EBC and ultra fine particles (between 3.5 and 200 nm in size) against removal and growth processes are 5.1 and 5.5 days respectively, supporting lifetime estimates used in various modelling studies.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 108 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3