Evolution of atmospheric connectivity in the 20th century

Author:

Arizmendi F.,Martí A. C.,Barreiro M.

Abstract

Abstract. We aim to study the evolution of the upper atmosphere connectivity over the 20th century as well as to distinguish the oceanically forced component from the atmospheric internal variability. For this purpose we build networks from two different reanalysis data sets using both linear and nonlinear statistical similarity measures to determine the existence of links between different regions of the world in the two halves of the last century. We furthermore use symbolic analysis to emphasize intra-seasonal, intra-annual and inter-annual timescales. Both linear and nonlinear networks have similar structures and evolution, showing that the most connected regions are in the tropics over the Pacific Ocean. Also, the Southern Hemisphere extratropics have more connectivity in the first half of the 20th century, particularly on intra-annual and intra-seasonal timescales. Changes over the Pacific main connectivity regions are analyzed in more detail. Both linear and nonlinear networks show that the central and western Pacific regions have decreasing connectivity from early 1900 up to about 1940, when it starts increasing again until the present. The inter-annual network shows a similar behavior. However, this is not true of other timescales. On intra-annual timescales the minimum connectivity is around 1956, with a negative (positive) trend before (after) that date for both the central and western Pacific. While this is also true of the central Pacific on intra-seasonal timescales, the western Pacific shows a positive trend during the entire 20th century. In order to separate the internal and forced connectivity networks and to study their evolution through time, an ensemble of atmospheric general circulation model outputs is used. The results suggest that the main connectivity patterns captured in the reanalysis networks are due to the oceanically forced component, particularly on inter-annual timescales. Moreover, the atmospheric internal variability seems to play an important role in determining the intra-seasonal timescale networks.

Funder

European Commission

Publisher

Copernicus GmbH

Subject

General Medicine

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3