ELIFAN, an algorithm for the estimation of cloud cover from sky imagers

Author:

Lothon Marie,Barnéoud Paul,Gabella Omar,Lohou FabienneORCID,Derrien Solène,Rondi Sylvain,Chiriaco Marjolaine,Bastin Sophie,Dupont Jean-Charles,Haeffelin Martial,Badosa JordiORCID,Pascal Nicolas,Montoux Nadège

Abstract

Abstract. In the context of a network of sky cameras installed on atmospheric multi-instrumented sites, we present an algorithm named ELIFAN, which aims to estimate the cloud cover amount from full-sky visible daytime images with a common principle and procedure. ELIFAN was initially developed for a self-made full-sky image system presented in this article and adapted to a set of other systems in the network. It is based on red-to-blue ratio thresholding for the distinction of cloudy and cloud-free pixels of the image and on the use of a cloud-free sky library, without taking account of aerosol loading. Both an absolute (without the use of a cloud-free reference image) and a differential (based on a cloud-free reference image) red-to-blue ratio thresholding are used. An evaluation of the algorithm based on a 1-year-long series of images shows that the proposed algorithm is very convincing for most of the images, with about 97 % of relevance in the process, outside the sunrise and sunset transitions. During those latter periods, however, ELIFAN has large difficulties in appropriately processing the image due to a large difference in color composition and potential confusion between cloud-free and cloudy sky at that time. This issue also impacts the library of cloud-free images. Beside this, the library also reveals some limitations during daytime, with the possible presence of very small and/or thin clouds. However, the latter have only a small impact on the cloud cover estimate. The two thresholding methodologies, the absolute and the differential red-to-blue ratio thresholding processes, agree very well, with departure usually below 8 % except in sunrise–sunset periods and in some specific conditions. The use of the cloud-free image library gives generally better results than the absolute process. It particularly better detects thin cirrus clouds. But the absolute thresholding process turns out to be better sometimes, for example in some cases in which the sun is hidden by a cloud.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference57 articles.

1. Allmen, M. C. and Kegelmeyer, W. P.: The computation of cloud-base height from paired whole-sky imaging cameras, J. Atmos. Ocean. Tech., 13, 97–113, https://doi.org/10.1175/1520-0426(1996)013<0097:tcocbh>2.0.co;2, 1996. a

2. Benech, B., Dessens, J., Charpentier, C., and Sauvageot, H.: Thermodynamic and microphysical impact of a 1000 MW heat-released source into the atmospheric environment, Proceeding of the Third WMO Scientific Conference on Weather Modification, 21–25 July 1980, 111–118, 1980. a

3. Blazek, M. and Pata, P.: Colour transformations and K-means segmentation for automatic cloud detection, Meteorol. Z., 24, 503–509, https://doi.org/10.1127/metz/2015/0656, 2015. a, b

4. Calbó, J. and Sabburg, J.: Feature extraction from whole-sky ground-based images for cloud-type recognition, J. Atmos. Ocean. Tech., 25, 3–14, https://doi.org/10.1175/2007jtecha959.1, 2008. a, b

5. Cazorla, A., Olmo, F. J., and Alados-Arboledasl, L.: Development of a sky imager for cloud cover assessment, J. Opt. Soc. Am., 25, 29–39, https://doi.org/10.1364/josaa.25.000029, 2008. a, b, c

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3