High organic carbon burial but high potential for methane ebullition in the sediments of an Amazonian hydroelectric reservoir

Author:

Quadra Gabrielle R.ORCID,Sobek Sebastian,Paranaíba José R.,Isidorova Anastasija,Roland Fábio,do Vale Roseilson,Mendonça Raquel

Abstract

Abstract. Reservoir sediments sequester significant amounts of organic carbon (OC), but at the same time, high amounts of methane (CH4) can be produced and emitted during the degradation of sediment OC. While the greenhouse gas emission of reservoirs has received a lot of attention, there is a lack of studies focusing on OC burial. In particular, there are no studies on reservoir OC burial in the Amazon, even though hydropower is expanding in the basin. Here we present results from the first investigation of OC burial and CH4 concentrations in the sediments of an Amazonian hydroelectric reservoir. We performed sub-bottom profiling, sediment coring and sediment pore water analysis in the Curuá Una (CUN) reservoir (Amazon, Brazil) during rising- and falling-water periods. The spatially resolved average sediment accumulation rate was 0.6 cm yr−1, and the average OC burial rate was 91 g C m−2 yr−1. This is the highest OC burial rate on record for low-latitude hydroelectric reservoirs. Such a high rate probably results from a high OC deposition onto the sediment, which compensates the high OC mineralization at a 28–30 ∘C water temperature. Elevated OC burial was found near the dam and close to major river inflow areas. C:N ratios between 10.3 and 17 (average ± SD: 12.9±2.1) suggest that both land-derived and aquatic OC accumulate in CUN sediments. About 23 % of the sediment pore water samples had dissolved CH4 above the saturation concentration. This represents a higher share than in other hydroelectric reservoirs, indicating a high potential for CH4 ebullition, particularly in river inflow areas.

Funder

European Research Council

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3