A renewed rise in global HCFC-141b emissions between 2017–2021

Author:

Western Luke M.ORCID,Redington Alison L.,Manning Alistair J.ORCID,Trudinger Cathy M.ORCID,Hu LeiORCID,Henne StephanORCID,Fang Xuekun,Kuijpers Lambert J. M.,Theodoridi Christina,Godwin David S.,Arduini JgorORCID,Dunse Bronwyn,Engel AndreasORCID,Fraser Paul J.,Harth Christina M.,Krummel Paul B.ORCID,Maione MichelaORCID,Mühle JensORCID,O'Doherty SimonORCID,Park Hyeri,Park SunyoungORCID,Reimann StefanORCID,Salameh Peter K.,Say DanielORCID,Schmidt Roland,Schuck TanjaORCID,Siso Carolina,Stanley Kieran M.ORCID,Vimont Isaac,Vollmer Martin K.ORCID,Young DickonORCID,Prinn Ronald G.,Weiss Ray F.ORCID,Montzka Stephen A.ORCID,Rigby MatthewORCID

Abstract

Abstract. Global emissions of the ozone-depleting gas HCFC-141b (1,1-dichloro-1-fluoroethane, CH3CCl2F) derived from measurements of atmospheric mole fractions increased between 2017 and 2021 despite a fall in reported production and consumption of HCFC-141b for dispersive uses. HCFC-141b is a controlled substance under the Montreal Protocol, and its phase-out is currently underway, after a peak in reported consumption and production in developing (Article 5) countries in 2013. If reported production and consumption are correct, our study suggests that the 2017–2021 rise is due to an increase in emissions from the bank when appliances containing HCFC-141b reach the end of their life, or from production of HCFC-141b not reported for dispersive uses. Regional emissions have been estimated between 2017–2020 for all regions where measurements have sufficient sensitivity to emissions. This includes the regions of northwestern Europe, east Asia, the United States and Australia, where emissions decreased by a total of 2.3 ± 4.6 Gg yr−1, compared to a mean global increase of 3.0 ± 1.2 Gg yr−1 over the same period. Collectively these regions only account for around 30 % of global emissions in 2020. We are not able to pinpoint the source regions or specific activities responsible for the recent global emission rise.

Funder

H2020 Marie Skłodowska-Curie Actions

National Aeronautics and Space Administration

Department for Business, Energy and Industrial Strategy, UK Government

Climate Program Office

Natural Environment Research Council

National Research Foundation of Korea

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference65 articles.

1. Andersen, S. O., Gao, S., Carvalho, S., Ferris, T., Gonzalez, M., Sherman, N. J., Wei, Y., and Zaelke, D.: Narrowing feedstock exemptions under the Montreal Protocol has multiple environmental benefits, P. Natl. Acad. Sci. USA, 118, e2022668118, https://doi.org/10.1073/pnas.2022668118, 2021. a, b

2. Arnold, T., Mühle, J., Salameh, P. K., Harth, C. M., Ivy, D. J., and Weiss, R. F.: Automated Measurement of Nitrogen Trifluoride in Ambient Air, Anal. Chem., 84, 4798–4804, https://doi.org/10.1021/ac300373e, 2012. a

3. Burkholder, J. B.: Appendix A: Summary of Abundances, Lifetimes, ODPs, REs, GWPs, and GTPs, in: Scientific Assessment of Ozone Depletion: 2018, vol. 58, Global Ozone Research and Monitoring Project, World Meteorological Organization, Geneva, Switzerland, https://csl.noaa.gov/assessments/ozone/2018/downloads/AppendixA_2018OzoneAssessment.pdf (last access: 14 July 2022​​​​​​​), 2019. a, b, c

4. Cunnold, D. M., Prinn, R. G., Rasmussen, R. A., Simmonds, P. G., Alyea, F. N., Cardelino, C. A., Crawford, A. J., Fraser, P. J., and Rosen, R. D.: The Atmospheric Lifetime Experiment: 3. Lifetime methodology and application to three years of CFCl3 data, J. Geophys. Res.-Oceans, 88, 8379–8400, https://doi.org/10.1029/JC088iC13p08379, 1983. a

5. Dunse, B., Derek, N., Fraser, P., and Krummel, P.: Australian and Global Emissions of Ozone Depleting Substances, Report prepared for the Australian Government Department of Agriculture, Water and the Environment, Tech. Rep., CSIRO Oceans and Atmosphere, Melbourne, Australia, iii, 57 pp., https://www.agriculture.gov.au/sites/default/files/documents/australian-global-emissions-ozone-depleting-substances.pdf (last access: 14 July 2022), 2021. a

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3