The anisotropy of geomaterial granite

Author:

Müller FranzORCID,Hallas Peter,Kroner Uwe

Abstract

Abstract. Granites appear to be isotropic, which qualifies them as suitable crystalline host rocks for nuclear waste repository sites. However, despite their optical appearance, granites show a primary structural anisotropy (Bouchez, 1997) that evolved during emplacement and crystallization of the melt. The major processes involved are magmatic flow and oriented crystal growth (Müller et al., 2011). Hypothetically, it is expected that different tectonic environments, i.e. different orientations of the stress tensor, cause significant differences in the primary anisotropy, which is expressed by the crystallographic preferred orientation (CPO) of the rock-forming minerals. It is likely that primary anisotropic petrophysical properties control the orientation of post-magmatic structural features like extensional fractures and thus shape potential fluid pathways. We present the first results of a systematic study of felsic plutonites, i.e. the GAME project (Gefüge, Textur- und Anisotropie-Messungen von potenziell für die Endlagerung geeigneten Graniten zur Charakterisierung möglicher Fluidwegsamkeiten). The samples of syn-Variscan felsic plutons from two sites (Erzgebirge and Fichtelgebirge) represent different tectonic settings during intrusion: extension and compression. Furthermore, they depict different stages of fractionation of the peraluminous granite suites. The CPOs were analysed using the neutron time-of-flight (ToF) texture diffractometer SKAT (Keppler et al., 2014; Ullemeyer et al., 1998) and EBSD (electron backscatter diffraction). Using scanning electron microscope (SEM) automated mineral liberation analysis (Schulz et al., 2020), modal mineral compositions are quantified. This enables us to model primary or “intrinsic” petrophysical properties for these granites based on the elastic stiffness tensor of the individual rock-forming minerals (Mainprice et al., 2011). Main- and trace-element geochemical data (ICP-AES and ICP-MS) allow for a characterization of the different magmatic settings of the samples. All granites show distinct preferred orientations of rock-forming minerals. The quartz textures, for example, exhibit similar CPOs, with point maxima of the positive rhombs in combination with small circles to crossed-girdle c-axis distributions. However, the orientation with respect to the geographic reference system strongly varies. We will discuss the CPOs in relation to the stress tensor orientation during emplacement of the felsic plutons and compare the primary anisotropy with the post-magmatic fracture patterns of the particular granites.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3