Long-term hazard assessment of explosive eruptions at Jan Mayen (Norway) and implications for air traffic in the North Atlantic

Author:

Titos ManuelORCID,Martínez Montesinos BeatrizORCID,Barsotti Sara,Sandri LauraORCID,Folch ArnauORCID,Mingari LeonardoORCID,Macedonio GiovanniORCID,Costa AntonioORCID

Abstract

Abstract. Volcanic eruptions are among the most jeopardizing natural events due to their potential impacts on life, assets, and the environment. In particular, atmospheric dispersal of volcanic tephra and aerosols during explosive eruptions poses a serious threat to life and has significant consequences for infrastructures and global aviation safety. The volcanic island of Jan Mayen, located in the North Atlantic under trans-continental air traffic routes, is considered the northernmost active volcanic area in the world with at least five eruptive periods recorded during the last 200 years. However, quantitative hazard assessments on the possible consequences for the air traffic of a future ash-forming eruption at Jan Mayen are nonexistent. This study presents the first comprehensive long-term volcanic hazard assessment for the volcanic island of Jan Mayen in terms of ash dispersal and concentration at different flight levels. In order to delve into the characterization and modeling of that potential impact, a probabilistic approach based on merging a large number of numerical simulations is adopted, varying the volcano's eruption source parameters (ESPs) and meteorological scenario. Each ESP value is randomly sampled following a continuous probability density function (PDF) based on the Jan Mayen geological record. Over 20 years of meteorological data is considered in order to explore the natural variability associated with weather conditions and is used to run thousands of simulations of the ash dispersal model FALL3D on a 2 km resolution grid. The simulated scenarios are combined to produce probability maps of airborne ash concentration, arrival time, and persistence of unfavorable conditions at flight levels 50 and 250 (FL050 and FL250). The resulting maps can serve as an aid during the development of civil protection strategies, to decision-makers and aviation stakeholders, in assessing and preventing the potential impact of a future ash-rich eruption at Jan Mayen.

Funder

Cordis

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3