Geologic and geodetic constraints on the magnitude and frequency of earthquakes along Malawi's active faults: the Malawi Seismogenic Source Model (MSSM)

Author:

Williams Jack N.ORCID,Wedmore Luke N. J.,Fagereng ÅkeORCID,Werner Maximilian J.ORCID,Mdala Hassan,Shillington Donna J.,Scholz Christopher A.,Kolawole Folarin,Wright Lachlan J. M.,Biggs Juliet,Dulanya Zuze,Mphepo Felix,Chindandali Patrick

Abstract

Abstract. Active fault data are commonly used in seismic hazard assessments, but there are challenges in deriving the slip rate, geometry, and frequency of earthquakes along active faults. Herein, we present the open-access geospatial Malawi Seismogenic Source Model (MSSM; https://doi.org/10.5281/zenodo.5599616), which describes the seismogenic properties of faults that formed during ongoing east African rifting in Malawi. We first use empirically derived constraints to geometrically classify active faults into section, fault, and multifault seismogenic sources. For sources in the North Basin of Lake Malawi, slip rates can be derived from the vertical offset of a seismic reflector that dated lake cores indicate is 75 ka. Elsewhere, slip rates are constrained from advancing a systems-based approach that partitions geodetically derived rift extension rates in Malawi between seismogenic sources using a priori constraints on a regional strain distribution and a hanging wall flexural extension in magma-poor continental rifts. Slip rates are then combined with source geometry and empirical scaling relationships to estimate earthquake magnitudes and recurrence intervals, and their uncertainty is described from the variability in logic tree outcomes used in these calculations. Sources in the MSSM are 5–269 km long, which implies that large-magnitude (Mw 7–8) earthquakes may occur in Malawi. However, low slip rates (0.05–2 mm yr−1) mean that the frequency of such events will be low (recurrence intervals of ∼103–104 years). We also find that, for 9 out of 11 faults in Lake Malawi's North Basin, differences in the slip rates, when estimated independently from the geodetic data and the offset seismic reflector, are not statistically significant. The MSSM represents an important resource for investigating Malawi's increasing seismic risk and provides a framework for incorporating active fault data into seismic hazard assessment elsewhere in the East African Rift and other tectonically active regions.

Funder

Engineering and Physical Sciences Research Council

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Reference197 articles.

1. Accardo, N. J., Shillington, D. J., Gaherty, J. B., Scholz, C. A., Nyblade, A. A., Chindandali, P. R. N., Kamihanda, G., McCartney, T., Wood, D., and Wambura Ferdinand, R.: Constraints on Rift Basin Structure and Border Fault Growth in the Northern Malawi Rift From 3-D Seismic Refraction Imaging, J. Geophys. Res.-Sol. Ea., 123, 10003–10025, https://doi.org/10.1029/2018JB016504, 2018.

2. Accardo, N. J., Gaherty, J. B., Shillington, D. J., Hopper, E., Nyblade, A. A., Ebinger, C. J., Scholz, C. A., Chindandali, P. R. N., Wambura-Ferdinand, R., Mbogoni, G., Russell, J. B., Holtzman, B. K., Havlin, C., and Class, C.: Thermochemical Modification of the Upper Mantle Beneath the Northern Malawi Rift Constrained From Shear Velocity Imaging, Geochem. Geophy. Geosy., 21, 1–19, https://doi.org/10.1029/2019GC008843, 2020.

3. Acocella, V., Faccenna, C., Funiciello, R., and Rossetti, F.: Sand-box modelling of basement-controlled transfer zones in extensional domains, Terra Nov., 11, 149–156, https://doi.org/10.1046/j.1365-3121.1999.00238.x, 1999.

4. Agostini, A., Bonini, M., Corti, G., Sani, F., and Mazzarini, F.: Fault architecture in the Main Ethiopian Rift and comparison with experimental models: Implications for rift evolution and Nubia-Somalia kinematics, Earth Planet. Sci. Lett., 301, 479–492, https://doi.org/10.1016/j.epsl.2010.11.024, 2011.

5. Ambraseys, N. N.: The Rukuwa Earthquake of 13 December 1910 in East-Africa, Terra Nov., 3, 202–211, https://doi.org/10.1111/j.1365-3121.1991.tb00873.x, 1991.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3