Magnitude and source area estimations of severe prehistoric earthquakes in the western Austrian Alps

Author:

Oswald Patrick,Strasser MichaelORCID,Skapski Jens,Moernaut JasperORCID

Abstract

Abstract. In slowly deforming intraplate tectonic regions such as the Alps only limited knowledge exists on the occurrence of severe earthquakes, their maximum possible magnitude, and their potential source areas. This is mainly due to long earthquake recurrence rates exceeding the time span of instrumental earthquake records and historical documentation. Lacustrine paleoseismology aims at retrieving long-term continuous records of seismic shaking. A paleoseismic record from a single lake provides information on events for which seismic shaking exceeded the intensity threshold at the lake site. In addition, when positive and negative evidence for seismic shaking from multiple sites can be gathered for a certain time period, minimum magnitudes and source locations can be estimated for paleo-earthquakes by a reverse application of an empirical intensity prediction equation in a geospatial analysis. Here, we present potential magnitudes and source locations of four paleo-earthquakes in the western Austrian Alps based on the integration of available and updated lake paleoseismic data, which comprise multiple mass-transport deposits on reflection seismic profiles and turbidites and soft-sediment deformation structures in sediment cores. The paleoseismic records at Plansee and Achensee covering the last ∼10 kyr were extended towards the age of lake initiation after deglaciation to obtain the longest possible paleoseismic catalogue at each lake site. Our results show that 25 severe earthquakes are recorded in the four lakes Plansee, Piburgersee, Achensee, and potentially Starnbergersee over the last ∼16 kyr, from which four earthquakes are interpreted to have left imprints in two or more lakes. Earthquake recurrence intervals range from ca. 1000 to 2000 years, with a weakly periodic to aperiodic recurrence behavior for the individual records. We interpret that relatively shorter recurrence intervals in the more orogen-internal archives Piburgersee and Achensee are related to enhanced tectonic loading, whereas a longer recurrence rate in the more orogen-external archive Plansee might reflect a decreased stress transfer across the current-day enhanced seismicity zone. Plausible epicenters of paleo-earthquake scenarios coincide with the current enhanced seismicity regions. Prehistoric earthquakes with a minimum moment magnitude (Mw) 5.8–6.1 have occurred around the Inn valley, the Brenner region, and the Fernpass–Loisach region and might have reached up to Mw 6.3 at Achensee. The paleo-earthquake catalogue might hint at a shift in severe earthquake activity near the Inn valley from east to west to east during postglacial times. ShakeMaps highlight that such severe earthquake scenarios do not solely impact the enhanced seismicity region of Tyrol but widely affect adjacent regions like southern Bavaria in Germany.

Funder

Tiroler Wissenschaftsförderung

Austrian Science Fund

Interreg

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3