Evaluating and ranking Southeast Asia's exposure to explosive volcanic hazards
-
Published:2022-04-07
Issue:4
Volume:22
Page:1233-1265
-
ISSN:1684-9981
-
Container-title:Natural Hazards and Earth System Sciences
-
language:en
-
Short-container-title:Nat. Hazards Earth Syst. Sci.
Author:
Jenkins Susanna F.ORCID, Biass SébastienORCID, Williams George T., Hayes Josh L., Tennant Eleanor, Yang Qingyuan, Burgos Vanesa, Meredith Elinor S., Lerner Geoffrey A., Syarifuddin Magfira, Verolino Andrea
Abstract
Abstract. Regional volcanic threat assessments provide a large-scale comparable vision of the threat posed by multiple volcanoes. They are useful for prioritising risk-mitigation actions and are required by local through international agencies, industries and governments to prioritise where further study and support could be focussed. Most regional volcanic threat studies have oversimplified volcanic hazards and their associated impacts by relying on concentric radii as proxies for hazard footprints and by focussing only on population exposure. We have developed and applied a new approach that quantifies and ranks exposure to multiple volcanic hazards for 40 high-threat volcanoes in Southeast Asia. For each of our 40 volcanoes, hazard spatial extent, and intensity where appropriate, was probabilistically modelled for four volcanic hazards across three eruption scenarios, giving 697 080 individual hazard footprints plus 15 240 probabilistic hazard outputs. These outputs were overlain with open-access datasets across five exposure categories using an open-source Python geographic information system (GIS) framework developed for this study (https://github.com/vharg/VolcGIS, last access: 5 April 2022). All study outputs – more than 6500 GeoTIFF files and 70 independent estimates of exposure to volcanic hazards across 40 volcanoes – are provided in the “Data availability” section in user-friendly format. Calculated exposure values were used to rank each of the 40 volcanoes in terms of the threat they pose to surrounding communities. Results highlight that the island of Java in Indonesia has the highest median exposure to volcanic hazards, with Merapi consistently ranking as the highest-threat volcano. Hazard seasonality, as a result of varying wind conditions affecting tephra dispersal, leads to increased exposure values during the peak rainy season (January, February) in Java but the dry season (January through April) in the Philippines. A key aim of our study was to highlight volcanoes that may have been overlooked perhaps because they have not been frequently or recently active but that have the potential to affect large numbers of people and assets. It is not intended to replace official hazard and risk information provided by the individual country or volcano organisations. Rather, this study and the tools developed provide a road map for future multi-source regional volcanic exposure assessments with the possibility to extend the assessment to other geographic regions and/or towards impact and loss.
Funder
National Research Foundation Singapore
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences
Reference103 articles.
1. Aldrian, E. and Dwi Susanto, R.: Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature, Int. J. Climatol., 23, 1435–1452, 2003. 2. Aravena, A., Cioni, R., Bevilacqua, A., de' Michieli Vitturi, M., Esposti Ongaro, T., and Neri, A.: Tree-branching-based enhancement of kinetic energy models for reproducing channelization processes of pyroclastic density currents, J. Geophys. Res.-Solid, 125, e2019JB019271, https://doi.org/10.1029/2019JB019271, 2020. 3. Aspinall, W. P., Auker, M. R., Hincks, T. K., Mahony, S. H., Pooley, J., Nadim, F., Syre, E., Sparks, R. S. J., and Bank, T. W.: Volcano Hazard and Exposure in Track II Countries and Risk Mitigation Measures – GFDRR Volcano Risk Study, The World Bank, 309 pp., 2011. 4. Auker, M., Sparks, R., Siebert, L., Crosweller, H., and Ewert, J.: A statistical analysis of the global historical volcanic fatalities record, J. Appl. Volcanol., 2, 1–24, 2013. 5. Auker, M. R., Sparks, R. S. J., Jenkins, S. F., Aspinall, W. P., Brown, S. K., Deligne, N. I., Jolly, G., Loughlin, S. C., Marzocchi, W., Newhall, C. G., and Palma, J. L.: Development of a new global Volcanic Hazard Index (VHI), in: Global Volcanic Hazards and Risk, edited by: Loughlin, S. C., Sparks, R. S. J., Brown, S. K., Jenkins, S. F., and Vye-Brown, C., Cambridge University Press, Cambridge, UK, https://www.cambridge.org/de/academic/subjects/earth-and-environmental-science/mineralogy-petrology-and-volcanology/global-volcanic-hazards-and-risk?format=HB&isbn=9781107111752 (last access: 6 April 2022), 2015.
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|