Identifying urban sources as cause of elevated grass pollen concentrations using GIS and remote sensing

Author:

Skjøth C. A.ORCID,Ørby P. V.,Becker T.,Geels C.,Schlünssen V.,Sigsgaard T.,Bønløkke J. H.,Sommer J.,Søgaard P.,Hertel O.

Abstract

Abstract. We examine here the hypothesis that during flowering, the grass pollen concentrations at a specific site reflect the distribution of grass pollen sources within a few kilometres of this site. We perform this analysis on data from a measurement campaign in the city of Aarhus (Denmark) using three pollen traps and by comparing these observations with a novel inventory of grass pollen sources. The source inventory is based on a new methodology developed for urban-scale grass pollen sources. The new methodology is believed to be generally applicable for the European area, as it relies on commonly available remote sensing data combined with management information for local grass areas. The inventory has identified a number of grass pollen source areas present within the city domain. The comparison of the measured pollen concentrations with the inventory shows that the atmospheric concentrations of grass pollen in the urban zone reflect the source areas identified in the inventory, and that the pollen sources that are found to affect the pollen levels are located near or within the city domain. The results also show that during days with peak levels of pollen concentrations there is no correlation between the three urban traps and an operational trap located just 60 km away. This finding suggests that during intense flowering, the grass pollen concentration mirrors the local source distribution and is thus a local-scale phenomenon. Model simulations aimed at assessing population exposure to pollen levels are therefore recommended to take into account both local sources and local atmospheric transport, and not to rely only on describing regional to long-range transport of pollen. The derived pollen source inventory can be entered into local-scale atmospheric transport models in combination with other components that simulate pollen release in order to calculate urban-scale variations in the grass pollen load. The gridded inventory with a resolution of 14 m is therefore made available as supplementary material to this paper, and the verifying grass pollen observations are additionally available in tabular form.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

Cited by 98 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3