Identifying urban sources as cause of elevated grass pollen concentrations using GIS and remote sensing
-
Published:2013-01-29
Issue:1
Volume:10
Page:541-554
-
ISSN:1726-4189
-
Container-title:Biogeosciences
-
language:en
-
Short-container-title:Biogeosciences
Author:
Skjøth C. A.ORCID, Ørby P. V., Becker T., Geels C., Schlünssen V., Sigsgaard T., Bønløkke J. H., Sommer J., Søgaard P., Hertel O.
Abstract
Abstract. We examine here the hypothesis that during flowering, the grass pollen concentrations at a specific site reflect the distribution of grass pollen sources within a few kilometres of this site. We perform this analysis on data from a measurement campaign in the city of Aarhus (Denmark) using three pollen traps and by comparing these observations with a novel inventory of grass pollen sources. The source inventory is based on a new methodology developed for urban-scale grass pollen sources. The new methodology is believed to be generally applicable for the European area, as it relies on commonly available remote sensing data combined with management information for local grass areas. The inventory has identified a number of grass pollen source areas present within the city domain. The comparison of the measured pollen concentrations with the inventory shows that the atmospheric concentrations of grass pollen in the urban zone reflect the source areas identified in the inventory, and that the pollen sources that are found to affect the pollen levels are located near or within the city domain. The results also show that during days with peak levels of pollen concentrations there is no correlation between the three urban traps and an operational trap located just 60 km away. This finding suggests that during intense flowering, the grass pollen concentration mirrors the local source distribution and is thus a local-scale phenomenon. Model simulations aimed at assessing population exposure to pollen levels are therefore recommended to take into account both local sources and local atmospheric transport, and not to rely only on describing regional to long-range transport of pollen. The derived pollen source inventory can be entered into local-scale atmospheric transport models in combination with other components that simulate pollen release in order to calculate urban-scale variations in the grass pollen load. The gridded inventory with a resolution of 14 m is therefore made available as supplementary material to this paper, and the verifying grass pollen observations are additionally available in tabular form.
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics
Reference73 articles.
1. Alcazar, P., Galan, C., Carinanos, P., and Dominguez-Vilches, E.: Effects of sampling height and climatic conditions in aerobiological studies, J. Invest. Allerg. Clin., 9, 253–261, 1999. 2. Avolio, E., Pasqualoni, L., Federico, S., Fornaciari, M., Bonofiglio, T., Orlandi, F., Bellecci, C., and Romano, B.: Correlation between large-scale atmospheric fields and the olive pollen season in Central Italy, Int. J. Biometeorol., 52, 787–796, 2008. 3. Belmonte, J., Alarcon, M., Avila, A., Scialabba, E., and Pino, D.: Long-range transport of beech (Fagus sylvatica L.) pollen to Catalonia (north-eastern Spain), Int. J. Biometeorol., 52, 675–687, 2008. 4. Bicheron, P., Defourny, P., Brockmann, C., Schouten, L., Vancutsem, C., Huc, M., Bontemps, S., Leroy, M., Achard, F., Herold, M., Ranera, F., and Arino, O.: Globcover products description Manual MEDIAS-France, 2008. 5. Brandt, J., Silver, J. D., Frohn, L. M., Geels, C., Gross, A., Hansen, A. B., Hansen, K. M., Hedegaard, G. B., Skjøth, C. A., Villadsen, H., Zare, A., and Christensen, J. H.: An integrated model study for Europe and North America using the Danish Eulerian Hemispheric Model with focus on intercontinental transport of air pollution, Atmos. Environ., 53, 156–176, 2012.
Cited by
98 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|