Parameterization of size of organic and secondary inorganic aerosol for efficient representation of global aerosol optical properties
-
Published:2023-05-04
Issue:9
Volume:23
Page:5023-5042
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Zhu Haihui, Martin Randall V.ORCID, Croft BettyORCID, Zhai ShixianORCID, Li ChiORCID, Bindle Liam, Pierce Jeffrey R.ORCID, Chang Rachel Y.-W.ORCID, Anderson Bruce E., Ziemba Luke D., Hair Johnathan W., Ferrare Richard A., Hostetler Chris A., Singh Inderjeet, Chatterjee DeepangsuORCID, Jimenez Jose L.ORCID, Campuzano-Jost PedroORCID, Nault Benjamin A.ORCID, Dibb Jack E., Schwarz Joshua S.ORCID, Weinheimer Andrew
Abstract
Abstract. Accurate representation of aerosol optical properties is essential for the modeling and remote sensing of atmospheric aerosols. Although aerosol optical properties are strongly dependent upon the aerosol size distribution, the use of detailed aerosol microphysics schemes in global atmospheric models is inhibited by associated computational demands. Computationally efficient parameterizations for aerosol size are needed. In
this study, airborne measurements over the United States (DISCOVER-AQ) and
South Korea (KORUS-AQ) are interpreted with a global chemical transport model (GEOS-Chem) to investigate the variation in aerosol size when organic
matter (OM) and sulfate–nitrate–ammonium (SNA) are the dominant aerosol components. The airborne measurements exhibit a strong correlation (r=0.83) between dry aerosol size and the sum of OM and SNA mass concentration (MSNAOM). A global microphysical simulation
(GEOS-Chem-TOMAS) indicates that MSNAOM and the
ratio between the two components (OM/SNA) are the major indicators for SNA and OM dry aerosol size. A parameterization of the dry effective radius (Reff) for SNA and OM aerosol is designed to represent the airborne measurements (R2=0.74; slope = 1.00) and the GEOS-Chem-TOMAS simulation (R2=0.72; slope = 0.81). When applied in the GEOS-Chem high-performance model, this parameterization improves the agreement between the simulated aerosol optical depth (AOD) and the ground-measured AOD from the Aerosol Robotic Network (AERONET; R2 from 0.68 to 0.73 and slope from 0.75 to 0.96). Thus, this parameterization offers a computationally efficient method to represent aerosol size dynamically.
Funder
National Aeronautics and Space Administration National Science Foundation
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference122 articles.
1. Aalto, P., Hämeri, K., Becker, E. D. O., Weber, R., Salm, J.,
Mäkelä, J. M., Hoell, C., O'Dowd, C. D., Karlsson, H., Hansson, H.,
Väkevä, M., Koponen, I. K., Buzorius, G., and Kulmala, M.: Physical
characterization of aerosol particles during nucleation events, Tellus B, 53, 344–358,
https://doi.org/10.3402/tellusb.v53i4.17127, 2001. 2. AboEl-Fetouh, Y., O'Neill, N. T., Kodros, J. K., Pierce, J. R., Lu, H.,
Ranjbar, K., and Xian, P.: Seasonal comparisons of GEOS-Chem-TOMAS (GCT)
simulations with AERONET-inversion retrievals over sites in the North
American and European Arctic, Atmos. Environ., 271, 118852,
https://doi.org/10.1016/j.atmosenv.2021.118852, 2022. 3. Adams, P. J. and Seinfeld, J. H.: Predicting global aerosol size
distributions in general circulation models, J. Geophys. Res.-Atmos., 107, AAC 4-1–AAC 4-23, https://doi.org/10.1029/2001JD001010,
2002. 4. Adams, P. J. and Seinfeld, J. H.: Disproportionate impact of particulate
emissions on global cloud condensation nuclei concentrations, Geophys. Res.
Lett., 30, 1–4, https://doi.org/10.1029/2002gl016303, 2003. 5. Amos, H. M., Jacob, D. J., Holmes, C. D., Fisher, J. A., Wang, Q., Yantosca, R. M., Corbitt, E. S., Galarneau, E., Rutter, A. P., Gustin, M. S., Steffen, A., Schauer, J. J., Graydon, J. A., Louis, V. L. St., Talbot, R. W., Edgerton, E. S., Zhang, Y., and Sunderland, E. M.: Gas-particle partitioning of atmospheric Hg(II) and its effect on global mercury deposition, Atmos. Chem. Phys., 12, 591–603, https://doi.org/10.5194/acp-12-591-2012, 2012.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|