Aerosol first indirect effect of African smoke at the cloud base of marine cumulus clouds over Ascension Island, southern Atlantic Ocean

Author:

de Graaf MartinORCID,Sarna Karolina,Brown Jessica,Tenner Elma V.,Schenkels Manon,Donovan David P.

Abstract

Abstract. The interactions between aerosols and clouds are among the least understood climatic processes and were studied over Ascension Island. A ground-based UV polarization lidar was deployed on Ascension Island, which is located in the stratocumulus-to-cumulus transition zone of the southeastern Atlantic Ocean, to infer cloud droplet sizes and droplet number density near the cloud base of marine boundary layer cumulus clouds. The aerosol–cloud interaction (ACI) due to the presence of smoke from the African continent was determined during the monsoonal dry season. In September 2016, a cloud droplet number density ACIN of 0.3 ± 0.21 and a cloud effective radius ACIr of 0.18 ± 0.06 were found, due to the presence of smoke in and under the clouds. Smaller droplets near the cloud base makes them more susceptible to evaporation, and smoke in the marine boundary layer over the southeastern Atlantic Ocean will likely accelerate the stratocumulus-to-cumulus transition. The lidar retrievals were tested against more traditional radar–radiometer measurements and shown to be robust and at least as accurate as the lidar–radiometer measurements. The lidar estimates of the cloud effective radius are consistent with previous studies of cloud base droplet sizes. The lidar has the large advantage of retrieving both cloud and aerosol properties using a single instrument.

Funder

Koninklijke Hollandsche Maatschappij der Wetenschappen

Technische Universiteit Delft

Wageningen University and Research

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3