Impact of aerosol optics on vertical distribution of ozone in autumn over Yangtze River Delta
-
Published:2023-05-05
Issue:9
Volume:23
Page:5177-5190
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Yan Shuqi, Zhu Bin, Shi Shuangshuang, Lu Wen, Gao Jinhui, Kang Hanqing, Liu DuanyangORCID
Abstract
Abstract. Tropospheric ozone, an important secondary pollutant, is greatly impacted by aerosols within boundary layer (BL). Previous studies have mainly attributed ozone variation to either aerosol–BL or aerosol–photolysis interactions at the near-surface level. In this study, we analyze the sensitivities of ozone response to aerosol mixing states (e.g., mixing behavior hypothesis of scattering and absorbing components) in the vertical direction and address the effects of aerosol–BL and aerosol–photolysis interactions on ozone profiles in autumn by Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) simulations. The aerosol internal mixing state experiment reasonably reproduces the vertical distribution and time variation in meteorological elements and ozone. Sensitivity experiments show that aerosols lead to turbulent suppression, precursor accumulation, lower-level photolysis reduction, and upper-level photolysis enhancement. Consequently, ozone basically decreases within entire the BL during daytime (08:00–17:00 LT), and the decrease is the least in the external mixing state (2.0 %) when compared with internal (10.5 %) and core shell mixing states (8.6 %). The photolysis enhancement is the most significant in the external mixing state due to its strong scattering ability. By process analysis, lower-level ozone chemical loss is enhanced due to photolysis reduction and NOx accumulation under a volatile organic compound (VOC)-limited regime. Upper-level ozone chemical production is accelerated due to a higher photolysis rate resulting from aerosol backscattering. Therefore, the increased ozone entrainment from BL aloft to the surface induced by the boosted ozone vertical gradient outweighs the decreased ozone entrainment induced by turbulent suppression after 11:00 LT. Additional simulations support the finding that the aerosol effect on precursors, photolysis, and ozone is consistent under different underlying surface and pollution conditions.
Funder
National Natural Science Foundation of China
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference62 articles.
1. Ackerman, T. P. and Toon, O. B.: Absorption of visible radiation in
atmosphere containing mixtures of absorbing and non-absorbing particles,
Appl. Optics, 20, 3661–3662, https://doi.org/10.1364/AO.21.000758, 1981. 2. Atmospheric Chemistry Observations and Modeling/National Center for Atmospheric Research/University Corporation for Atmospheric Research: Whole Atmosphere Community Climate Model (WACCM) Model Output, Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory [data set], https://doi.org/10.5065/G643-Z138, 2020. 3. Bond, T. C., Habib, G., and Bergstrom, R. W.: Limitations in the enhancement
of visible light absorption due to mixing state, J. Geophys. Res., 111, D20211,
https://doi.org/10.1029/2006JD007315, 2006. 4. Cappa, C. D., Onasch, T. B., Massoli, P., Worsnop, D. R., Bates, T. S., Cross, E. S., and Zaveri, R. A.: Radiative absorption enhancements due to the mixing state of atmospheric black carbon, Science, 337, 1078–1081, https://doi.org/10.1126/science.1223447, 2012. 5. Chen, S. H. and Sun, W. Y.: A one-dimensional time dependent cloud model, J. Meteor. Soc. Japan, 80, 99–118, https://doi.org/10.2151/jmsj.80.99, 2002.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|