Impact of aerosol optics on vertical distribution of ozone in autumn over Yangtze River Delta

Author:

Yan Shuqi,Zhu Bin,Shi Shuangshuang,Lu Wen,Gao Jinhui,Kang Hanqing,Liu DuanyangORCID

Abstract

Abstract. Tropospheric ozone, an important secondary pollutant, is greatly impacted by aerosols within boundary layer (BL). Previous studies have mainly attributed ozone variation to either aerosol–BL or aerosol–photolysis interactions at the near-surface level. In this study, we analyze the sensitivities of ozone response to aerosol mixing states (e.g., mixing behavior hypothesis of scattering and absorbing components) in the vertical direction and address the effects of aerosol–BL and aerosol–photolysis interactions on ozone profiles in autumn by Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) simulations. The aerosol internal mixing state experiment reasonably reproduces the vertical distribution and time variation in meteorological elements and ozone. Sensitivity experiments show that aerosols lead to turbulent suppression, precursor accumulation, lower-level photolysis reduction, and upper-level photolysis enhancement. Consequently, ozone basically decreases within entire the BL during daytime (08:00–17:00 LT), and the decrease is the least in the external mixing state (2.0 %) when compared with internal (10.5 %) and core shell mixing states (8.6 %). The photolysis enhancement is the most significant in the external mixing state due to its strong scattering ability. By process analysis, lower-level ozone chemical loss is enhanced due to photolysis reduction and NOx accumulation under a volatile organic compound (VOC)-limited regime. Upper-level ozone chemical production is accelerated due to a higher photolysis rate resulting from aerosol backscattering. Therefore, the increased ozone entrainment from BL aloft to the surface induced by the boosted ozone vertical gradient outweighs the decreased ozone entrainment induced by turbulent suppression after 11:00 LT. Additional simulations support the finding that the aerosol effect on precursors, photolysis, and ozone is consistent under different underlying surface and pollution conditions.

Funder

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3