Detection of open water dynamics with ENVISAT ASAR in support of land surface modelling at high latitudes

Author:

Bartsch A.,Trofaier A. M.,Hayman G.,Sabel D.,Schlaffer S.,Clark D. B.,Blyth E.

Abstract

Abstract. Wetlands are generally accepted as being the largest but least well quantified single source of methane (CH4). The extent of wetland or inundation is a key factor controlling methane emissions, both in nature and in the parameterisations used in large-scale land surface and climate models. Satellite-derived datasets of wetland extent are available on the global scale, but the resolution is rather coarse (>25 km). The purpose of the present study is to assess the capability of active microwave sensors to derive inundation dynamics for use in land surface and climate models of the boreal and tundra environments. The focus is on synthetic aperture radar (SAR) operating in C-band since, among microwave systems, it has comparably high spatial resolution and data availability, and long-term continuity is expected. C-band data from ENVISAT ASAR (Advanced SAR) operating in wide swath mode (150 m resolution) were investigated and an automated detection procedure for deriving open water fraction has been developed. More than 4000 samples (single acquisitions tiled onto 0.5° grid cells) have been analysed for July and August in 2007 and 2008 for a study region in Western Siberia. Simple classification algorithms were applied and found to be robust when the water surface was smooth. Modification of input parameters results in differences below 1 % open water fraction. The major issue to address was the frequent occurrence of waves due to wind and precipitation, which reduces the separability of the water class from other land cover classes. Statistical measures of the backscatter distribution were applied in order to retrieve suitable classification data. The Pearson correlation between each sample dataset and a location specific representation of the bimodal distribution was used. On average only 40 % of acquisitions allow a separation of the open water class. Although satellite data are available every 2–3 days over the Western Siberian study region, the irregular acquisition intervals and periods of unsuitable weather suggest that an update interval of 10 days is more realistic for this domain. SAR data availability is currently limited. Future satellite missions, however, which aim for operational services (such as Sentinel-1 with its C-band SAR instrument), may provide the basis for inundation monitoring for land surface and climate modelling applications.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

Reference38 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3