Mid-Holocene climate of the Tibetan Plateau and hydroclimate in three major river basins based on high-resolution regional climate simulations

Author:

Huo Yiling,Peltier William RichardORCID,Chandan DeepakORCID

Abstract

Abstract. The Tibetan Plateau (TP) contains the headwaters of major Asian rivers that sustain billions of people and plays an important role in both regional and global climate through thermal and mechanical forcings. Understanding the characteristics and changes to the hydrological regimes on the TP during the mid-Holocene (MH) will help in understanding the expected future changes. Here, an analysis of the hydroclimates over the headwater regions of three major rivers originating in the TP, namely the Yellow, Yangtze, and Brahmaputra rivers, is presented, using dynamically downscaled climate simulations constructed using the Weather Research and Forecasting Model (WRF) coupled to the hydrological model WRF-Hydro. Green Sahara (GS) boundary conditions have also been incorporated into the global model so as to capture the remote feedbacks between the Saharan vegetation and the river hydrographs over the TP. Model–data comparisons show that the dynamically downscaled simulations significantly improve the regional climate simulations over the TP in both the modern day and the MH, highlighting the crucial role of downscaling in both present-day and past climates. TP precipitation is also strongly affected by the greening of the Sahara, with a particularly large increase over the southern TP, as well as a delay in the monsoon withdrawal. The simulation results were first validated over the upper basins of the three rivers before the hydrological responses to the MH forcing for the three basins were quantified. Both the upper Yellow and Yangtze rivers exhibit a decline in streamflow during the MH, especially in summer, which is a combined effect of less snowmelt and stronger evapotranspiration. The GS forcing caused a rise in temperature during the MH, as well as larger rainfall but less snowfall and greater evaporative water losses. The Brahmaputra River runoff is simulated to increase in the MH due to greater net precipitation.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Copernicus GmbH

Subject

Paleontology,Stratigraphy,Global and Planetary Change

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3