Clustering of heterogeneous precipitation fields for the assessment and possible improvement of lumped neural network models for streamflow forecasts

Author:

Lauzon N.,Anctil F.,Baxter C. W.

Abstract

Abstract. This work addresses the issue of better considering the heterogeneity of precipitation fields within lumped rainfall-runoff models where only areal mean precipitation is usually used as an input. A method using a Kohonen neural network is proposed for the clustering of precipitation fields. The evaluation and improvement of the performance of a lumped rainfall-runoff model for one-day ahead predictions is then established based on this clustering. Multilayer perceptron neural networks are employed as lumped rainfall-runoff models. The Bas-en-Basset watershed in France, which is equipped with 23 rain gauges with data for a 21-year period, is employed as the application case. The results demonstrate the relevance of the proposed clustering method, which produces groups of precipitation fields that are in agreement with the global climatological features affecting the region, as well as with the topographic constraints of the watershed (i.e., orography). The strengths and weaknesses of the rainfall-runoff models are highlighted by the analysis of their performance vis-à-vis the clustering of precipitation fields. The results also show the capability of multilayer perceptron neural networks to account for the heterogeneity of precipitation, even when built as lumped rainfall-runoff models.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3