Influence of rain on the abundance of bioaerosols in fine and coarse particles
-
Published:2017-02-16
Issue:3
Volume:17
Page:2459-2475
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Rathnayake Chathurika M., Metwali Nervana, Jayarathne Thilina, Kettler Josh, Huang Yuefan, Thorne Peter S.ORCID, O'Shaughnessy Patrick T., Stone Elizabeth A.
Abstract
Abstract. Assessing the environmental, health, and climate impacts of bioaerosols requires knowledge of their size and abundance. These two properties were assessed through daily measurements of chemical tracers for pollens (sucrose, fructose, and glucose), fungal spores (mannitol and glucans), and Gram-negative bacterial endotoxins in two particulate matter (PM) size modes: fine particles (< 2.5 µm) and coarse particles (2.5–10 µm) as determined by their aerodynamic diameter. Measurements were made during the spring tree pollen season (mid-April to early May) and late summer ragweed season (late August to early September) in the Midwestern US in 2013. Under dry conditions, pollen, and fungal spore tracers were primarily in coarse PM (> 75 %), as expected for particles greater than 2.5 µm. Rainfall on 2 May corresponded to maximum atmospheric pollen tracer levels and a redistribution of pollen tracers to the fine PM fraction (> 80 %). Both changes were attributed to the osmotic rupture of pollen grains that led to the suspension of fine-sized pollen fragments. Fungal spore tracers peaked in concentration following spring rain events and decreased in particle size, but to a lesser extent than pollens. A short, heavy thunderstorm in late summer corresponded to an increase in endotoxin and glucose levels, with a simultaneous shift to smaller particle sizes. Simultaneous increase in bioaerosol levels and decrease in their size have significant implications for population exposures to bioaerosols, particularly during rain events. Chemical mass balance (CMB) source apportionment modeling and regionally specific pollen profiles were used to apportion PM mass to pollens and fungal spores. Springtime pollen contributions to the mass of particles < 10 µm (PM10) ranged from 0.04 to 0.8 µg m−3 (0.2–38 %, averaging 4 %), with maxima occurring on rainy days. Fungal spore contributions to PM10 mass ranged from 0.1 to 1.5 µg m−3 (0.8–17 %, averaging 5 %), with maxima occurring after rain. Overall, this study defines changes to the fine- and coarse-mode distribution of PM, pollens, fungal spores, and endotoxins in response to rain in the Midwestern United States and advances the ability to apportion PM mass to pollens.
Funder
National Institutes of Health
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference134 articles.
1. Allitt, U.: Airborne fungal spores and the thunderstorm of 24 June 1994, Aerobiologia, 16, 397–406, https://doi.org/10.1023/A:1026503500730, 2000. 2. Aloni, B., Peet, M., Pharr, M., and Karni, L.: The effect of high temperature and high atmospheric CO2 on carbohydrate changes in bell pepper (Capsicum annuum) pollen in relation to its germination, Physiol. Plantarum, 112, 505–512, https://doi.org/10.1034/j.1399-3054.2001.1120407.x, 2001. 3. Andronache, C.: Estimated variability of below-cloud aerosol removal by rainfall for observed aerosol size distributions, Atmos. Chem. Phys., 3, 131–143, https://doi.org/10.5194/acp-3-131-2003, 2003. 4. Augustin, S., Wex, H., Niedermeier, D., Pummer, B., Grothe, H., Hartmann, S., Tomsche, L., Clauss, T., Voigtländer, J., Ignatius, K., and Stratmann, F.: Immersion freezing of birch pollen washing water, Atmos. Chem. Phys., 13, 10989–11003, https://doi.org/10.5194/acp-13-10989-2013, 2013. 5. Baklanov, A. and Sørensen, J.: Parameterisation of radionuclide deposition in atmospheric long-range transport modelling, Phys. Chem. Earth Pt. B, 26, 787–799, https://doi.org/10.1016/S1464-1909(01)00087-9, 2001.
Cited by
82 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|