Directional, horizontal inhomogeneities of cloud optical thickness fields retrieved from ground-based and airbornespectral imaging

Author:

Schäfer MichaelORCID,Bierwirth Eike,Ehrlich AndréORCID,Jäkel Evelyn,Werner Frank,Wendisch ManfredORCID

Abstract

Abstract. Clouds exhibit distinct horizontal inhomogeneities of their optical and microphysical properties, which complicate their realistic representation in weather and climate models. In order to investigate the horizontal structure of cloud inhomogeneities, 2-D horizontal fields of optical thickness (τ) of subtropical cirrus and Arctic stratus are investigated with a spatial resolution of less than 10 m. The 2-D τ-fields are derived from (a) downward (transmitted) solar spectral radiance measurements from the ground beneath four subtropical cirrus and (b) upward (reflected) radiances measured from aircraft above 10 Arctic stratus. The data were collected during two field campaigns: (a) Clouds, Aerosol, Radiation, and tuRbulence in the trade wind regime over BArbados (CARRIBA) and (b) VERtical Distribution of Ice in Arctic clouds (VERDI). One-dimensional and 2-D autocorrelation functions, as well as power spectral densities, are derived from the retrieved τ-fields. The typical spatial scale of cloud inhomogeneities is quantified for each cloud case. Similarly, the scales at which 3-D radiative effects influence the radiance field are identified. In most of the investigated cloud cases considerable cloud inhomogeneities with a prevailing directional structure are found. In these cases, the cloud inhomogeneities favour a specific horizontal direction, while across this direction the cloud is of homogeneous character. The investigations reveal that it is not sufficient to quantify horizontal cloud inhomogeneities using 1-D inhomogeneity parameters; 2-D parameters are necessary.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3