The future of the El Niño–Southern Oscillation: using large ensembles to illuminate time-varying responses and inter-model differences
-
Published:2023-04-14
Issue:2
Volume:14
Page:413-431
-
ISSN:2190-4987
-
Container-title:Earth System Dynamics
-
language:en
-
Short-container-title:Earth Syst. Dynam.
Author:
Maher NicolaORCID, Wills Robert C. JnglinORCID, DiNezio Pedro, Klavans Jeremy, Milinski SebastianORCID, Sanchez Sara C.ORCID, Stevenson Samantha, Stuecker Malte F.ORCID, Wu Xian
Abstract
Abstract. Future changes in the El Niño–Southern Oscillation (ENSO) are uncertain, both because future projections differ between climate models and because the large internal variability of ENSO clouds the diagnosis of forced changes in observations and individual climate model simulations. By leveraging 14 single model initial-condition large ensembles (SMILEs), we robustly isolate the time-evolving response of ENSO sea surface temperature (SST) variability to anthropogenic forcing from internal variability in each SMILE. We find nonlinear changes in time in many models and considerable inter-model differences in projected changes in ENSO and the mean-state tropical Pacific zonal SST gradient. We demonstrate a linear relationship between the change in ENSO SST variability and the tropical Pacific zonal SST gradient, although forced changes in the tropical Pacific SST gradient often occur later in the 21st century than changes in ENSO SST variability, which can lead to departures from the linear relationship. Single-forcing SMILEs show a potential contribution of anthropogenic forcing (aerosols and greenhouse gases) to historical changes in ENSO SST variability, while the observed historical strengthening of the tropical Pacific SST gradient sits on the edge of the model spread for those models for which single-forcing SMILEs are available. Our results highlight the value of SMILEs for investigating time-dependent forced responses and inter-model differences in ENSO projections. The nonlinear changes in ENSO SST variability found in many models demonstrate the importance of characterizing this time-dependent behavior, as it implies that ENSO impacts may vary dramatically throughout the 21st century.
Funder
Division of Atmospheric and Geospace Sciences National Oceanic and Atmospheric Administration Cooperative Institute for Research in Environmental Sciences Department of Energy, Labor and Economic Growth National Center for Atmospheric Research
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences
Reference95 articles.
1. Balmaseda, M. A., Davey, M. K., and Anderson, D. L. T.: Decadal and Seasonal
Dependence of ENSO Prediction Skill, J. Climate, 8, 2705–2715,
https://doi.org/10.1175/1520-0442(1995)008<2705:DASDOE>2.0.CO;2, 1995. a 2. Bellenger, H., Guilyardi, E., Leloup, J., Lengaigne, M., and Vialard, J.: ENSO
representation in climate models: from CMIP3 to CMIP5, Clim. Dynam., 42,
1999–2018, https://doi.org/10.1007/s00382-013-1783-z, 2014. a 3. Beobide-Arsuaga, G., Bayr, T., Reintges, A., and Latif, M.: Uncertainty of
ENSO-amplitude projections in CMIP5 and CMIP6 models, Clim. Dynam., 56, 3875–3888,
https://doi.org/10.1007/s00382-021-05673-4, 2021. a, b, c, d 4. Boucher, O., Servonnat, J., Albright, A. L., Aumont, O., Balkanski, Y.,
Bastrikov, V., Bekki, S., Bonnet, R., Bony, S., Bopp, L., Braconnot, P.,
Brockmann, P., Cadule, P., Caubel, A., Cheruy, F., Codron, F., Cozic, A.,
Cugnet, D., D'Andrea, F., Davini, P., de Lavergne, C., Denvil, S., Deshayes,
J., Devilliers, M., Ducharne, A., Dufresne, J.-L., Dupont, E., Éthé, C.,
Fairhead, L., Falletti, L., Flavoni, S., Foujols, M.-A., Gardoll, S.,
Gastineau, G., Ghattas, J., Grandpeix, J.-Y., Guenet, B., Guez, Lionel, E.,
Guilyardi, E., Guimberteau, M., Hauglustaine, D., Hourdin, F., Idelkadi, A.,
Joussaume, S., Kageyama, M., Khodri, M., Krinner, G., Lebas, N., Levavasseur,
G., Lévy, C., Li, L., Lott, F., Lurton, T., Luyssaert, S., Madec, G.,
Madeleine, J.-B., Maignan, F., Marchand, M., Marti, O., Mellul, L.,
Meurdesoif, Y., Mignot, J., Musat, I., Ottlé, C., Peylin, P., Planton, Y.,
Polcher, J., Rio, C., Rochetin, N., Rousset, C., Sepulchre, P., Sima, A.,
Swingedouw, D., Thiéblemont, R., Traore, A. K., Vancoppenolle, M., Vial, J.,
Vialard, J., Viovy, N., and Vuichard, N.: Presentation and Evaluation of the
IPSL-CM6A-LR Climate Model, J. Adv. Model. Earth Sys.,
12, e2019MS002010, https://doi.org/10.1029/2019MS002010, 2020. a 5. Brunner, L., Hauser, M., Lorenz, R., and Beyerle, U.: The ETH Zurich CMIP6 next generation archive: technical documentation, Zenodo [data set], https://doi.org/10.5281/zenodo.3734128, 2020. a
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|