A model for French-press experiments of dry snow compaction

Author:

Meyer Colin R.ORCID,Keegan Kaitlin M.,Baker Ian,Hawley Robert L.

Abstract

Abstract. Snow densification stores water in alpine regions and transforms snow into ice on the surface of glaciers. Despite its importance in determining snow-water equivalent and glacier-induced sea level rise, we still lack a complete understanding of the physical mechanisms underlying snow compaction. In essence, compaction is a rheological process, where the rheology evolves with depth due to variation in temperature, pressure, humidity, and meltwater. The rheology of snow compaction can be determined in a few ways, for example, through empirical investigations (e.g., Herron and Langway, 1980), by microstructural considerations (e.g., Alley, 1987), or by measuring the rheology directly, which is the approach we take here. Using a French-press or cafetière-à-piston compression stage, Wang and Baker (2013) compressed numerous snow samples of different densities. Here we derive a mixture theory for compaction and airflow through the porous snow to compare against these experimental data. We find that a plastic compaction law explains experimental results. Taking standard forms for the permeability and effective pressure as functions of the porosity, we show that this compaction mode persists for a range of densities and overburden loads. These findings suggest that measuring compaction in the lab is a promising direction for determining the rheology of snow through its many stages of densification.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Water Science and Technology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3