Speciation and distribution of P associated with Fe and Al oxides in aggregate-sized fraction of an arable soil
Author:
Jiang X., Bol R.ORCID, Willbold S., Vereecken H., Klumpp E.
Abstract
Abstract. To maximize crop productivity fertilizer P is generally applied to arable soils, a significant proportion of which becomes stabilized by mineral components and in part subsequently becomes unavailable to plants. However, little is known about the relative contributions of the different organic and inorganic P bound to Fe/Al oxides in the smaller soil particles. The alkaline (NaOH-Na2EDTA) extraction with solution 31P-nuclear magnetic resonance (31P-NMR) spectroscopy is considered as a reliable method for extracting and quantifying organic P and (some) inorganic P. However, any so-called residual P after the alkaline extraction has remained unidentified. Therefore, in the present study, the amorphous (a) and crystalline (c) Fe/Al oxide minerals and related P in soil aggregate-sized fractions (> 20, 2–20, 0.45–2 and < 0.45 μm) were specifically extracted by oxalate (a-Fe/Al oxides) and dithionite (DCB, both a- and c-Fe/Al oxides). These soil aggregate-sized fractions with and without the oxalate and DCB pre-treatments were then sequentially extracted by alkaline extraction prior to solution 31P-NMR spectroscopy. This was done to quantify the various chemical P forms which were associated with a- and c-Fe/Al oxides both in alkaline extraction and in the residual P of different soil aggregate-sized fractions. The results showed that overall P contents increased with decreasing size of the soil aggregate-sized fractions. However, the relative distribution and speciation of varying P forms were found to be independent of soil aggregate-size. The majority of alkaline extractable P was in the a-Fe/Al oxide fraction (42–47 % of total P), most of which was orthophosphate (36–41 % of total P). Furthermore, still significant amounts of particularly monoester P were bound to the oxides. Intriguingly, however, Fe/Al oxides were not the main bonding sites for pyrophosphate. Residual P contained similar amounts of total P associated with both a- (10–13 % of total P) and c-Fe oxides (10–12 % of total P) in various aggregate-sized fractions, suggesting that it was likely occluded within the a- and c-Fe oxides in soil. This implies that with the dissolution of Fe oxides, these P may be released and thus available for plants and microbial communities.
Publisher
Copernicus GmbH
Reference55 articles.
1. Acebal, S. G., Mijovilovich, A., Rueda, E. H., Aguirre, M. E., and Saragovi, C.: Iron-oxide mineralogy of a mollisol from argentina: a study by selective-dissolution techniques, X-ray diffraction, and mössbauer spectroscopy, Clays Clay Miner., 48, 322–330, 2000. 2. Arai, Y. and Livi, K. J.: Underassessed phosphorus fixation mechanisms in soil sand fraction, Geoderma, 192, 422–429, 2013. 3. Arai, Y., Livi, K. J. T., and Sparks, D. L.: Phosphate reactivity in long-term poultry litter-amended southern delaware sandy soils, Soil Sci. Soc. Am. J., 69, 616–629, 2005. 4. Berns, A. E., Philipp, H., Narres, H. D., Burauel, P., Vereecken, H., and Tappe, W.: Effect of gamma-sterilization and autoclaving on soil organic matter structure as studied by solid state NMR, UV and fluorescence spectroscopy, Eur. J. Soil Sci., 59, 540–550, 2008. 5. Biber, M. V., dos Santos Afonso, M., and Stumm, W.: The coordination chemistry of weathering: IV. Inhibition of the dissolution of oxide minerals, Geochim. Cosmochim. Ac., 58, 1999–2010, 1994.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|