Unusual chlorine partitioning in the 2015/16 Arctic winter lowermost stratosphere: observations and simulations

Author:

Johansson SörenORCID,Santee Michelle L.,Grooß Jens-UweORCID,Höpfner MichaelORCID,Braun Marleen,Friedl-Vallon FelixORCID,Khosrawi Farahnaz,Kirner OliverORCID,Kretschmer ErikORCID,Oelhaf Hermann,Orphal Johannes,Sinnhuber Björn-MartinORCID,Tritscher InesORCID,Ungermann JörnORCID,Walker Kaley A.ORCID,Woiwode Wolfgang

Abstract

Abstract. The Arctic winter 2015/16 was characterized by cold stratospheric temperatures. Here we present a comprehensive view of the temporal evolution of chlorine in the lowermost stratosphere over the course of the studied winter. We utilize two-dimensional vertical cross sections of ozone (O3) and chlorine nitrate (ClONO2), measured by the airborne limb imager GLORIA (Gimballed Limb Observer for Radiance Imaging of the Atmosphere) during the POLSTRACC/GW-LCYCLE II/GWEX/SALSA campaigns, to investigate the tropopause region in detail. Observations from three long-distance flights in January, February, and March 2016 are discussed. ClONO2 volume mixing ratios up to 1100 pptv were measured at 380 K potential temperature in mesoscale structures. Similar mesoscale structures are also visible in O3 measurements. Both trace gas measurements are applied to evaluate simulation results from the chemistry transport model CLaMS (Chemical Lagrangian Model of the Stratosphere) and the chemistry–climate model EMAC (ECHAM5/MESSy Atmospheric Chemistry). These comparisons show agreement within the expected performance of these models. Satellite measurements from Aura/MLS (Microwave Limb Sounder) and SCISAT/ACE-FTS (Atmospheric Chemistry Experiment – Fourier Transform Spectrometer) provide an overview over the whole winter and information about the stratospheric situation above the flight altitude. Time series of these satellite measurements reveal unusually low hydrochloric acid (HCl) and ClONO2 at 380 K from the beginning of January to the end of February 2016, while chlorine monoxide (ClO) is strongly enhanced. In March 2016, unusually rapid chlorine deactivation into HCl is observed instead of deactivation into ClONO2, the more typical pathway for deactivation in the Arctic. Chlorine deactivation observed in the satellite time series is well reproduced by CLaMS. Sensitivity simulations with CLaMS demonstrate the influence of low abundances of O3 and reactive nitrogen (NOy) due to ozone depletion and sedimentation of NOy-containing particles, respectively. On the basis of the different altitude and time ranges of these effects, we conclude that the substantial chlorine deactivation into HCl at 380 K arose as a result of very low ozone abundances together with low temperatures. Additionally, CLaMS estimates ozone depletion of at least 0.4 ppmv at 380 K and 1.75 ppmv at 490 K, which is comparable to other extremely cold Arctic winters. We have used CLaMS trajectories to analyze the history of enhanced ClONO2 measured by GLORIA. In February, most of the enhanced ClONO2 is traced back to chlorine deactivation that had occurred within the past few days prior to the GLORIA measurement. In March, after the final warming, air masses in which chlorine has previously been deactivated into ClONO2 have been transported in the remnants of the polar vortex towards the location of measurement for at least 11 d.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3