Significant source of secondary aerosol: formation from gasoline evaporative emissions in the presence of SO<sub>2</sub> and NH<sub>3</sub>

Author:

Chen TianzengORCID,Liu YongchunORCID,Ma QingxinORCID,Chu BiwuORCID,Zhang Peng,Liu Changgeng,Liu Jun,He Hong

Abstract

Abstract. Gasoline evaporative emissions have become an important anthropogenic source of urban atmospheric volatile organic compounds (VOCs) and secondary organic aerosol (SOA). These emissions have a significant impact on regional air quality, especially in China where car ownership is growing rapidly. However, the contribution of evaporative emissions to secondary aerosol (SA) is not clear in an air pollution complex in which a high concentration of SO2 and NH3 was present. In this study, the effects of SO2 and NH3 on SA formation from unburned gasoline vapor were investigated in a 30 m3 indoor smog chamber. It was found that an increase in SO2 and NH3 concentrations (0–151 and 0–200 ppb, respectively) could linearly promote the formation of SA, which could be enhanced by a factor of 1.6–2.6 and 2.0–2.5, respectively. Sulfate was most sensitive to the SO2 concentration, followed by organic aerosol, which was due not only to the acid catalytic effect, but was also related to the formation of organic sulfur-containing compounds. In the case of an increasing NH3 concentration, ammonium nitrate increased more significantly than organic aerosol, and nitrogen-containing organics were also enhanced, as revealed by the results of positive matrix factorization (PMF) analysis. New particle formation (NPF) and particle size growth were also significantly enhanced in the presence of SO2 and NH3. This work indicates that gasoline evaporative emissions will be a significant source of SA, especially in the presence of high concentrations of SO2 and NH3. Meanwhile, these emissions might also be a potential source of sulfur- and nitrogen-containing organics. Our work provides a scientific basis for the synergistic emission reduction of secondary aerosol precursors, including NOx, SO2, NH3, and particularly VOCs, to mitigate particulate matter (PM) pollution in China.

Funder

Ministry of Science and Technology of the People's Republic of China

National Natural Science Foundation of China

Chinese Academy of Sciences

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3