Growth-deviation model to understand the perceived variety of falling snow

Author:

Nelson J.

Abstract

Abstract. What is the source of snow-crystal variety? This question is answered using a model of snow-crystal growth in a cloud. In the model, crystals start under various initial cloud-crystal conditions, and then encounter growth perturbations from random air-temperature deviations along simple crystal trajectories. To obtain distributions of these deviations, I analyzed recent high-resolution measurements of cloud updrafts and temperatures. The trajectories and distributions are used to estimate the number of possible snow crystal shapes, to a given viewing resolution, from a range of initial conditions. The logarithm of this number, defined here as the perceived shape variety or "diversity", is dominated not by the range of conditions, but rather by the air-temperature deviations along a trajectory. This qualitative result is independent of the viewing resolution. Thus, temperature deviations are the main source of crystal diversity. When plotted against the crystal's initial temperature (here –11 to –19°C), the curve is mitten-shaped, with a main peak at –15.4°C and a smaller, sharper peak near –14.4°C. The mitten shape arises from temperature trends in the crystal's terminal fallspeed and prism-face growth rate. Specifically, the two diversity peaks are due to maxima in growth-rate sensitivity to temperature near –15.4 and –14.0°C. Applying the results to all snow crystals ever formed, then, to 1-μm resolution, all crystals that began near –15°C would appear unique, but some that began near –11°C would not.

Publisher

Copernicus GmbH

Reference15 articles.

1. Bentley, W. A.: Twenty years' study of snow crystals, Mon. Weather Rev. 21, 212–214, 1901.

2. Feller, W.: An Introduction to Probability Theory and its Applications, Vol I, 3rd Edition, John Wiley & Sons, NY, 1968 (see end of § II.3.).

3. Frank, F. C.: Snow crystals, Contemp. Phys., 23, 3–22, 1982.

4. Hallett, J.: How snow crystals grow, Am. Sci., 72, 582–589, 1984.

5. Hallett, J. and Knight, C. A.: On the symmetry of snow dendrites, Atmos. Res., 32, 1–11, 1994.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3