Technical Note: The single particle soot photometer fails to reliably detect PALAS soot nanoparticles
-
Published:2012-12-20
Issue:12
Volume:5
Page:3099-3107
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Gysel M.ORCID, Laborde M., Mensah A. A.ORCID, Corbin J. C.ORCID, Keller A., Kim J., Petzold A.ORCID, Sierau B.
Abstract
Abstract. The single particle soot photometer (SP2) uses laser-induced incandescence (LII) for the measurement of atmospheric black carbon (BC) particles. The BC mass concentration is obtained by combining quantitative detection of BC mass in single particles with a counting efficiency of 100% above its lower detection limit. It is commonly accepted that a particle must contain at least several tenths of a femtogram BC in order to be detected by the SP2. Here we show the result that most BC particles from a PALAS spark discharge soot generator remain undetected by the SP2, even if their BC mass, as independently determined with an aerosol particle mass analyser (APM), is clearly above the typical lower detection limit of the SP2. Comparison of counting efficiency and effective density data of PALAS soot with flame generated soot (combustion aerosol standard burner, CAST), fullerene soot and carbon black particles (Cabot Regal 400R) reveals that particle morphology can affect the SP2's lower detection limit. PALAS soot particles are fractal-like agglomerates of very small primary particles with a low fractal dimension, resulting in a very low effective density. Such loosely packed particles behave like "the sum of individual primary particles" in the SP2's laser. Accordingly, most PALAS soot particles remain undetected as the SP2's laser intensity is insufficient to heat the primary particles to their vaporisation temperature because of their small size (Dpp ≈ 5–10 nm). Previous knowledge from pulsed laser-induced incandescence indicated that particle morphology might have an effect on the SP2's lower detection limit, however, an increase of the lower detection limit by a factor of ∼5–10, as reported here for PALAS soot, was not expected. In conclusion, the SP2's lower detection limit at a certain laser power depends primarily on the total BC mass per particle for compact particles with sufficiently high effective density. By contrast, the BC mass per primary particle mainly determines whether fractal-like particles with low fractal dimension and very small primary particles are detectable, while their total BC mass has only a minor influence. This effect shifts the lower detection limit to much higher BC mass, or makes them completely undetectable. Consequently, care has to be taken when using the SP2 in applications dealing with loosely packed particles that have very small primary particles as building blocks.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference43 articles.
1. Baumgardner, D., Popovicheva, O., Allan, J., Bernardoni, V., Cao, J., Cavalli, F., Cozic, J., Diapouli, E., Eleftheriadis, K., Genberg, P. J., Gonzalez, C., Gysel, M., John, A., Kirchstetter, T. W., Kuhlbusch, T. A. J., Laborde, M., Lack, D., Müller, T., Niessner, R., Petzold, A., Piazzalunga, A., Putaud, J. P., Schwarz, J., Sheridan, P., Subramanian, R., Swietlicki, E., Valli, G., Vecchi, R., and Viana, M.: Soot reference materials for instrument calibration and intercomparisons: a workshop summary with recommendations, Atmos. Meas. Tech., 5, 1869–1887, https://doi.org/10.5194/amt-5-1869-2012, 2012. 2. Bladh, H., Johnsson, J., and Bengtsson, P.-E.: On the dependence of the laser-induced incandescence (LII) signal on soot volume fraction for variations in particle size, Appl. Phys. B, 90, 109–125, https://doi.org/10.1007/s00340-007-2826-0, 2008. 3. Bladh, H., Johnsson, J., Rissler, J., Abdulhamid, H., Olofsson, N.-E., Sanati, M., Pagels, J., and Bengtsson, P.-E.: Influence of soot particle aggregation on time-resolved laser-induced incandescence signals, Appl. Phys. B, 104, 331–341, https://doi.org/10.1007/s00340-011-4470-y, 2011. 4. DeCarlo, P. F., Slowik, J. G., Worsnop, D. R., Davidovits, P., and Jimenez, J. L.: Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 1: Theory, Aerosol Sci. Technol., 38, 1185–1205, https://doi.org/10.1080/027868290903907, 2004. 5. Droplet Measurement Technologies: Single Particle Soot Photometer (SP2) – Operator Manual – DOC-0171 – Revision G-2, 2012.
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|