New insights from a nonlocal generalization of the Farley-Buneman instability problem at high latitudes

Author:

Drexler J.,St.-Maurice J.-P.,Chen D.,Moorcroft D. R.

Abstract

Abstract. When their growth rate becomes too small, the E-region Farley-Buneman and gradient-drift instabilities switch from absolute to convective. The neutral density gradient is what gives the instabilities their convective character. At high latitudes, the orientation of the neutral density gradient is close to the geomagnetic field direction. We show that this causes the wave-vector component along the geomagnetic field to increase with time. This in turn leads to wave stabilization, since the increase goes hand-in-hand with an increase in parallel electric fields that ultimately short-circuits the irregularities. We show that from an equivalent point of view, the increase in the parallel wave vector is accompanied by a large upward group velocity that limits the time during which the perturbations are allowed to grow before escaping the unstable region. The goal of the present work is to develop a systematic formalism to account for the propagation and the growth/decay of high-latitude Farley-Buneman and gradient-drift waves through vertical convective effects. We note that our new formalism shies away from a plane wave decomposition along the magnetic field direction. A study of the solution to the resulting nonlinear aspect angle equation shows that, for a host of initial conditions, jump conditions are often triggered in the parallel wave-vector (defined here as the vertical derivative of the phase). When these jump conditions occur, the waves turn into strongly damped ion-acoustic modes, and their evolution is quickly terminated. We have limited this first study to Farley-Buneman modes and to a flow direction parallel to the electron E × B drift. Our initial findings indicate that, irrespective of whether or not a jump in aspect angle is triggered by initial conditions, the largest amplitude modes are usually near the ion-acoustic speed of the medium (although Doppler shifted by the ion motion), unless the growth rates are small, in which case the waves tend to move at the same drift as the ambient electrons.Key words. Ionosphere (auroral ionosphere; ionospheric irregularities; plasma waves and instabilities)

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3