Air Density Induced Error on Wind Energy Estimation

Author:

Dupré AuroreORCID,Drobinski Philippe,Badosa JordiORCID,Briard Christian,Plougonven Riwal

Abstract

Abstract. In recent years, environmental concerns have encouraged the use of wind power as a renewable energy resource. However, high penetration of the wind power in the electricity system is a challenge due to the uncertainty of wind energy forecast. Estimation of the wind energy production requires a forecast for the wind (the main source of uncertainty) but also of density, often overlooked. Measure of air density is a key for more accurate wind energy prediction. Wind farms often lack instrumentations of temperature and pressure, needed for accurate air density estimation at hub height to be used for locally debiasing air density forecast. In this study, the error budget of air density estimate is computed distinguishing temperature and pressure contributions. The analysis uses measurements for in-depth local analysis as well as meteorological reanalysis to investigate the added-value of a model-based value when measurement is missing. Meteorological reanalysis is also used to study spatial pattern of error budgets (mountainous area, coastal regions, plains, ...). The effect of altitude is carefully accounted for. Temperature is by far the variable inducing the largest errors when it is missing in the air density correction, and replaced by the standard atmosphere value (i.e. 15 °C, used as reference in power curves). It is particularly true for very cold or warm conditions (i.e. far from the standard value), for which the error on wind energy production is nearly halved when an accurate correction of temperature is performed.

Publisher

Copernicus GmbH

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3