Abstract
Abstract. Radiation effects from solar energetic proton (SEP) events are a concern when the International Space Station reaches high latitudes accessible to SEPs. We use data from the 20–29 and 29–64 MeV proton channels of the Proton/Electron Telescope on the SAMPEX satellite during nine large SEP events to determine the experimental geographic cutoff latitudes for the two energy ranges. These are compared with calculated cutoff latitudes based on a computer model, SEPTR (solar energetic particle tracer). The observed cutoff latitudes are systematically equatorward of the latitudes calculated by the SEPTR program using a Tsyganenko field model, but that model produces mean values of ~ 2° for latitudinal differences with observations, DLat, which are ~ 3 times smaller than those using the 1995 International Geomagnetic Reference Field model alone. The number distributions of DLat are peaked near 0° and decline toward higher values. With the Tsyganenko model, we find no significant trend in either the DLat or their variances with increasing Kp .Key words. Interplanetary physics (energetic particles) – Magnetospheric physics (polar cap phenomena) – Space plasma physics (charged particle motion and acceleration)
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献