Residual circulation and freshwater transport in the Dutch Wadden Sea: a numerical modelling study

Author:

Duran-Matute M.,Gerkema T.,de Boer G. J.,Nauw J. J.,Gräwe U.ORCID

Abstract

Abstract. The Dutch Wadden Sea is a region of intertidal flats located between the chain of Wadden Islands and the Dutch mainland. We present numerical model results on the tidal prisms and residual flows through the tidal inlets and across one of the main watersheds. The model also provides insight into the pathways of fresh water originating from the two sluices at the Afsluitdijk (enclosure dike) through the use of passive tracers. All these results are obtained from three-dimensional numerical simulations carried out with the General Estuarine Transport Model (GETM), at a horizontal resolution of 200 m and with terrain-following vertical coordinates with 30 layers. We concentrate on the years 2009–2010, for which we impose meteorological forcing, freshwater discharge, and boundary conditions for tidal forcing and storm surges. Results from the model show an excellent agreement with various observational data sets for sea surface height, temperature, salinity and transport through the Texel Inlet. The simulations show that although tides are responsible for a characteristic pattern of residual transport through the inlets, the wind imposes a large variability on its magnitude and can even invert its direction during strong southwesterly winds. Even though these events are sporadic, they play an important role in the flushing of the Dutch Wadden Sea, as they strongly diminish the flushing time of fresh water. In addition, wind can force a residual transport across the Terschelling watershed of the same order, if not larger, than through any of the main tidal inlets, despite the fact that its tidal prism is much smaller than any of those of the inlets. For the pathways of fresh water, the Terschelling watershed turns out to be more important than was previously thought, while the opposite holds for the Vlie Inlet.

Publisher

Copernicus GmbH

Subject

Cell Biology,Developmental Biology,Embryology,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3