Instantaneous variance scaling of AIRS thermodynamic profiles using a circular area Monte Carlo approach
-
Published:2018-05-08
Issue:5
Volume:11
Page:2717-2733
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Dorrestijn Jesse,Kahn Brian H.,Teixeira João,Irion Fredrick W.
Abstract
Abstract. Satellite observations are used to obtain vertical profiles of variance
scaling of temperature (T) and specific humidity (q) in the atmosphere. A
higher spatial resolution nadir retrieval at 13.5 km complements previous
Atmospheric Infrared Sounder (AIRS) investigations with 45 km resolution
retrievals and enables the derivation of power law scaling exponents to
length scales as small as 55 km. We introduce a variable-sized circular-area
Monte Carlo methodology to compute exponents instantaneously within the swath
of AIRS that yields additional insight into scaling behavior. While this
method is approximate and some biases are likely to exist within non-Gaussian
portions of the satellite observational swaths of T and q, this method
enables the estimation of scale-dependent behavior within instantaneous
swaths for individual tropical and extratropical systems of interest. Scaling
exponents are shown to fluctuate between β=-1 and −3 at scales
≥500 km, while at scales ≤500 km they are typically near β≈-2, with q slightly lower than T at the smallest scales observed. In
the extratropics, the large-scale β is near −3. Within the tropics,
however, the large-scale β for T is closer to −1 as small-scale moist
convective processes dominate. In the tropics, q exhibits large-scale β
between −2 and −3. The values of β are generally consistent with
previous works of either time-averaged spatial variance estimates, or
aircraft observations that require averaging over numerous flight
observational segments. The instantaneous variance scaling methodology is
relevant for cloud parameterization development and the assessment of time
variability of scaling exponents.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference52 articles.
1. Aumann, H. H., Chahine, M. T., Gautier, C., Goldberg, M. D., Kalnay, E.,
McMillin, L. M., Revercomb, H., Rosenkranz, P. W., Smith, W. L., Staelin,
D. H., Strow, L. L., and Susskind, J.: AIRS/AMSU/HSB on the Aqua mission: Design, science objectives,
data products, and processing systems, IEEE T. Geosci. Remote, 41, 253–264,
2003. a 2. Bacmeister, J. T., Eckermann, S. D., Newman, P. A., Lait, L., Chan, K. R.,
Loewenstein, M., Proffitt, M. H., and Gary, B. L.: Stratospheric horizontal
wavenumber spectra of winds, potential temperature, and atmospheric tracers
observed by high-altitude aircraft, J. Geophys. Res.-Atmos., 101, 9441–9470,
1996. a 3. Bogenschutz, P. A. and Krueger, S. K.: A simplified pdf parameterization of
subgrid-scale clouds and turbulence for cloud-resolving models, J. Adv.
Model. Earth Sy., 5, 195–211, 2013. a 4. Bowman, K. W., Rodgers, C. D., Kulawik, S. S., Worden, J., Sarkissian, E.,
Osterman, G., Steck, T., Lou, M., Eldering, A., Shephard, M., Worden, H., Lampel, M., Clough, S.,
Brown, P., Rinsland, C., Gunson, M., and Beer, R.: Tropospheric Emission Spectrometer: Retrieval Method and Error Analysis, IEEE
T. Geosci. Remote, 44, 1297–1307, 2006. a 5. Chahine, M. T., Pagano, T. S., Aumann, H. H., Atlas, R., Barnet, C.,
Blaisdell, J., Chen, L., Divakarla, M., Fetzer, E. J., Goldberg, M., Gautier,
C., Granger, S., Hannon, S., Irion, F. W., Kakar, R., Kalnay, E.,
Lambrigtsen, B. H., Lee, S.-Y., Le Marshall, J., Mcmillan, W. W., Mcmillin,
L., Olsen, E. T., Revercomb, H., Rosenkranz, P., Smith, W. L., Staelin, D.,
Strow, L. L., Susskind, J., Tobin, D., Wolf, W., and Zhou, L.: AIRS:
Improving Weather Forecasting and Providing New Data on Greenhouse Gases,
B. Am. Meteorol. Soc, 87, 911–926, 2006. a, b, c, d, e
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|