Spatial distribution analysis of the OMI aerosol layer height: a pixel-by-pixel comparison to CALIOP observations
-
Published:2018-04-19
Issue:4
Volume:11
Page:2257-2277
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Chimot JulienORCID, Veefkind J. Pepijn, Vlemmix Tim, Levelt Pieternel F.
Abstract
Abstract. A global picture of atmospheric aerosol vertical distribution with a high temporal resolution is of key importance not only for
climate, cloud formation, and air quality research studies but also for correcting scattered radiation induced by aerosols in
absorbing trace gas retrievals from passive satellite sensors. Aerosol layer height (ALH) was retrieved from the OMI 477 nm
O2−O2 band and its spatial pattern evaluated over selected cloud-free scenes. Such retrievals benefit from a synergy with
MODIS data to provide complementary information on aerosols and cloudy pixels. We used a neural network approach previously trained
and developed. Comparison with CALIOP aerosol level 2 products over urban and industrial pollution in eastern China shows consistent
spatial patterns with an uncertainty in the range of 462–648 m. In addition, we show the possibility to determine the height
of thick aerosol layers released by intensive biomass burning events in South America and Russia from OMI visible
measurements. A Saharan dust outbreak over sea is finally discussed. Complementary detailed analyses show that the assumed aerosol
properties in the forward modelling are the key factors affecting the accuracy of the results, together with potential cloud
residuals in the observation pixels. Furthermore, we demonstrate that the physical meaning of the retrieved ALH scalar corresponds to
the weighted average of the vertical aerosol extinction profile. These encouraging findings strongly suggest the potential of the OMI
ALH product, and in more general the use of the 477 nm O2−O2 band from present and future similar satellite
sensors, for climate studies as well as for future aerosol correction in air quality trace gas retrievals.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference72 articles.
1. Acarreta, J. R., de Haan, J. F., and Stammes, P.: Cloud
pressure retrieval using the O2−O2 absorption band at 477 nm, J. Geophys. Res.-Atmos., 109, D05204,
https://doi.org/10.1029/2003JD003915, 2004. a, b, c, d 2. Amiridis, V., Marinou, E., Tsekeri, A., Wandinger, U., Schwarz, A., Giannakaki, E., Mamouri,
R., Kokkalis, P., Binietoglou, I., Solomos, S., Herekakis, T., Kazadzis, S., Gerasopoulos, E., Proestakis, E., Kottas, M., Balis, D.,
Papayannis, A., Kontoes, C., Kourtidis, K., Papagiannopoulos, N., Mona, L., Pappalardo, G., Le Rille, O., and Ansmann, A.: LIVAS: a
3-D multi-wavelength aerosol/cloud database based on CALIPSO and EARLINET, Atmos. Chem. Phys., 15, 7127–7153,
https://doi.org/10.5194/acp-15-7127-2015, 2015. a 3. Barkley,
M. P., Kurosu, T. P., Chance, K., De Smedt, I., Van Roozendael, M., Arneth, A., Hagberg, D., and Guenther, A.: Assessing sources of
uncertainty in formaldehyde air mass factors over tropical South America: Implications for top-down isoprene emission estimates,
J. Geophys. Res.-Atmos., 117, D13304, https://doi.org/10.1029/2011JD016827, 2012. a 4. Boersma, K. F., Eskes, H. J., and Brinksma, E. J.: Error
analysis for tropospheric NO2 retrieval from space, J. Geophys. Res.-Atmos., 109, D04311, https://doi.org/10.1029/2003JD003962, 2004. a 5. Boersma, K. F., Eskes, H. J., Dirksen, R. J., van der A, R. J., Veefkind, J. P., Stammes, P.,
Huijnen, V., Kleipool, Q. L., Sneep, M., Claas, J., Leitão, J., Richter, A., Zhou, Y., and Brunner, D.: An improved tropospheric
NO2 column retrieval algorithm for the Ozone Monitoring Instrument, Atmos. Meas. Tech., 4, 1905–1928,
https://doi.org/10.5194/amt-4-1905-2011, 2011. a, b, c, d
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|