Dissolved nitric oxide in the lower Elbe Estuary and the Port of Hamburg area
-
Published:2024-07-30
Issue:14
Volume:21
Page:3425-3440
-
ISSN:1726-4189
-
Container-title:Biogeosciences
-
language:en
-
Short-container-title:Biogeosciences
Author:
Ingeniero Riel Carlo O.ORCID, Schulz GesaORCID, Bange Hermann W.ORCID
Abstract
Abstract. Nitric oxide (NO) is an intermediate of various microbial nitrogen cycle processes, and the open-ocean and coastal areas are generally a source of NO to the atmosphere. However, our knowledge about its distribution and the main production processes in coastal areas and estuaries is rudimentary at best. To this end, dissolved NO concentrations were measured for the first time in surface waters along the lower Elbe Estuary and Port of Hamburg area in July 2021. The discrete surface water samples were analyzed using a chemiluminescence NO analyzer connected to a stripping unit. The NO concentrations ranged from below the limit of detection (9.1 pM) to 17.7 pM, averaging 12.5 pM, and were supersaturated in the surface layer of both the lower Elbe Estuary and the Port of Hamburg area, indicating that the study site was a source of NO to the atmosphere during the study period. On the basis of a comprehensive comparison of NO concentrations with parallel nutrient, oxygen, and nitrous oxide concentration measurements, we conclude that the observed distribution of dissolved NO most likely resulted from nitrification. In the Port of Hamburg, however, nitrifier denitrification and/or denitrification might also affect the NO distribution.
Funder
Deutscher Akademischer Austauschdienst Deutsche Forschungsgemeinschaft
Publisher
Copernicus GmbH
Reference78 articles.
1. Abada, A., Beiralas, R., Narvaez, D., Sperfeld, M., Duchin-Rapp, Y., Lipsman, V., Yuda, L., Cohen, B., Carmieli, R., Ben-Dor, S., Rocha, J., Huang Zhang, I., Babbin, A. R., and Segev, E.: Aerobic bacteria produce nitric oxide via denitrification and promote algal population collapse, ISME J., 17, 1167–1183, https://doi.org/10.1038/s41396-023-01427-8, 2023. 2. Adesina, A. O. and Sakugawa, H.: Photochemically generated nitric oxide in seawater: The peroxynitrite sink and its implications for daytime air quality, Sci. Total Environ., 781, 146683, https://doi.org/10.1016/j.scitotenv.2021.146683, 2021. 3. Amann, T., Weiss, A., and Hartmann, J.: Carbon dynamics in the freshwater part of the Elbe estuary, Germany: Implications of improving water quality, Estuar. Coast Shelf S., 107, 112–121, https://doi.org/10.1016/j.ecss.2012.05.012, 2012. 4. Anifowose, A. J. and Sakugawa, H.: Determination of daytime flux of nitric oxide radical (NO⚫) at an inland sea–atmospheric boundary in japan, J. Aquat. Pollut. Toxicol., 1, 1–6, 2017. 5. Anifowose, A. J., Takeda, K., and Sakugawa, H.: Photoformation rate, steady-state concentration and lifetime of nitric oxide radical (NO) in a eutrophic river in Higashi-Hiroshima, Japan, Chemosphere, 119, 302–309, https://doi.org/10.1016/j.chemosphere.2014.06.063, 2015.
|
|