A new quantitative approach to identify reworking in Eocene to Miocene pollen records from offshore Antarctica using red fluorescence and digital imaging
-
Published:2017-04-24
Issue:8
Volume:14
Page:2089-2100
-
ISSN:1726-4189
-
Container-title:Biogeosciences
-
language:en
-
Short-container-title:Biogeosciences
Author:
Strother Stephanie L., Salzmann UlrichORCID, Sangiorgi FrancescaORCID, Bijl Peter K., Pross Jörg, Escutia CarlotaORCID, Salabarnada Ariadna, Pound Matthew J.ORCID, Voss JochenORCID, Woodward JohnORCID
Abstract
Abstract. Antarctic palaeoclimate evolution and vegetation history after the formation of a continent-scale cryosphere at the Eocene–Oligocene boundary, 33.9 million years ago, has remained a matter of controversy. In particular, the reconstruction of terrestrial climate and vegetation has been strongly hampered by uncertainties in unambiguously identifying non-reworked as opposed to reworked sporomorphs that have been transported into Antarctic marine sedimentary records by waxing and waning ice sheets. Whereas reworked sporomorph grains over longer non-successive geological timescales are easily identifiable within younger sporomorph assemblages (e.g. Permian sporomorphs in Pliocene sediments), distinguishing non-reworked from reworked material in palynological assemblages over successive geological time periods (e.g. Eocene sporomorphs in Oligocene sediments) has remained problematic. This study presents a new quantitative approach to identifying non-reworked pollen assemblages in marine sediment cores from circum-Antarctic waters. We measured the fluorescence colour signature, including red, green, and blue fluorescence; brightness; intensity; and saturation values of selected pollen and spore taxa from Eocene, Oligocene, and Miocene sediments from the Wilkes Land margin Site U1356 (East Antarctica) recovered during Integrated Ocean Drilling Program (IODP) Expedition 318. Our study identified statistically significant differences in red-fluorescence values of non-reworked sporomorph taxa against age. We conclude that red fluorescence is a reliable parameter for identifying the presence of non-reworked pollen and spores in Antarctic marine sediment records from the circum-Antarctic realm that are influenced by glaciation and extensive reworking. Our study provides a new tool to accurately reconstruct Cenozoic terrestrial climate change on Antarctica using fossil pollen and spores.
Funder
Natural Environment Research Council
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics
Reference40 articles.
1. Anderson, J. B., Warny, S., Askin, R. A., Wellner, J. S., Bohaty, S. M., Kirshner, A. E., Livsey, D. N., Simms, A. R., Smith, T. R., Ehrmann W., Lawver, L. A., Barbeau, D., Wise, S. W., Kulhanek, D. K., Weaver, F. M., and Majewski, W.: Progressive Cenozoic cooling and the demise of Antarctica's last refugium, P. Natl. Acad. Sci. USA, 108, 11356–11360, https://doi.org/10.1073/pnas.1014885108, 2011. 2. Askin, R. A. and Raine, J. I.: Oligocene and Early Miocene Terrestrial Palynology of the Cape Roberts Drillhole CRP-2/2A, Victoria Land Basin, Antarctica, Terra Antarctica, 7, 493–501, 2000. 3. Bijl, P. K., Bendle, J. A., Bohaty, S. M., Pross, J., Schouten, S., Tauxe, L., Stickley, C. E., McKay, R. M., Röhl, U., Olney, M., Sluijs, A., Escutia, C., Brinkhuis, H., and Expedition 318 Scientists: Eocene cooling linked to early flow across the Tasmanian Gateway, P. Natl. Acad. Sci. USA, 110, 9645–9650, https://doi.org/10.1073/pnas.1220872110, 2013. 4. Birkenmajer, K. and Zastawniak, E.: Late Cretaceous-early Tertiary floras of King George Island, West Antarctica: their stratigraphic distribution and palaeoclimatic significance, in: Origins and Evolution of Antarctic Biota, Geological Society of London Special Publications, edited by: Crame, J. A., 47, 227–240, 1989. 5. Bujak, J. P. and Davies, E. H.: Fluorescence and the search for petroleum, Annu. Rev., 1982, 54–57, 1982.
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|