On the use of Infrared Atmospheric Sounding Interferometer (IASI) spectrally resolved radiances to test the EC-Earth climate model (v3.3.3) in clear-sky conditions

Author:

Della Fera StefanoORCID,Fabiano FedericoORCID,Raspollini PieraORCID,Ridolfi MarcoORCID,Cortesi UgoORCID,Barbara FlavioORCID,von Hardenberg Jost

Abstract

Abstract. The long-term comparison between simulated and observed spectrally resolved outgoing longwave radiation (OLR) can represent a stringent test for the direct verification and improvement of general circulation models (GCMs), which are regularly tuned by adjusting parameters related to subgrid processes not explicitly represented in the model to constrain the integrated OLR energy fluxes to observed values. However, a good agreement between simulated and observed integrated OLR fluxes may be obtained from the cancellation of opposite-in-sign systematic errors localized in specific spectral ranges. Since the mid-2000s, stable hyperspectral observations of the mid-infrared region (667 to 2750 cm−1) of the Earth emission spectrum have been provided by different sensors (e.g. AIRS, IASI and CrIS). Furthermore, the FORUM (Far-infrared Outgoing Radiation Understanding and Monitoring) mission, selected to be the ninth ESA Earth Explorer, will measure, starting from 2027, the terrestrial radiation emitted to space at the top of the atmosphere (TOA) from 100 to 1600 cm−1, filling the observational gap in the far-infrared (FIR) region, from 100 to 667 cm−1. In this work, in anticipation of FORUM measurements, we compare Infrared Atmospheric Sounding Interferometer (IASI) Metop-A observations to radiances simulated on the basis of the atmospheric fields predicted by the EC-Earth Global Climate Model (version 3.3.3) in clear-sky conditions. To simulate spectra based on the atmospheric and surface state provided by the climate model, the radiative transfer model σ-IASI has been integrated in the Cloud Feedback Model Intercomparison Project (COSP) package. Therefore, online simulations, provided by the EC-Earth model equipped with the new COSP–σ-IASI module, have been performed in clear-sky conditions with prescribed sea surface temperature and sea ice concentration, every 6 h, over a time frame consistent with the availability of IASI data. Systematic comparisons between observed and simulated brightness temperature (BT) have been performed in 10 cm−1 spectral intervals, on a global scale over the ocean, with a specific focus on the latitudinal belt between 30∘ S and 30∘ N. The analysis has shown a warm BT bias of about 3.5 K in the core of the CO2 absorption band and a cold BT bias of approximately 1 K in the wing of the CO2 band, due to a positive temperature bias in the stratosphere and a negative temperature bias in the middle troposphere of the climate model, respectively. Finally, considering a warm BT bias in the rotational–vibrational water vapour band, we have highlighted a dry bias of the water vapour concentration in the upper troposphere of the model.

Publisher

Copernicus GmbH

Subject

General Medicine

Reference52 articles.

1. Amato, U., Masiello, G., Serio, C., and Viggiano, M.: The σ-IASI code for the calculation of infrared atmospheric radiance and its derivatives, Environ. Modell. Softw., 17, 651–667, 2002. a, b

2. Anderson, G. P., Clough, S. A., Kneizys, F., Chetwynd, J. H., and Shettle, E. P.: AFGL atmospheric constituent profiles (0.120 km), Tech. rep., Air Force Geophysics Lab Hanscom AFB MA, https://apps.dtic.mil/dtic/tr/fulltext/u2/a175173.pdf (last access: 16 February 2023), 1986. a, b

3. Anderson, J. L., Balaji, V., Broccoli, A. J., Cooke, W. F., Delworth, T. L., Dixon, K. W., Donner, L. J., Dunne, K. A., Freidenreich, S. M., Garner, S. T., Gudgel, R. G., Gordon, C. T., Held, I. M., Hemler, R. S., Horowitz, L. W., Klein, S. A., Knutson, T. R., Kushner, P. J., Langenhost, A. R., Lau, N.-C., Liang, Z., Malyshev, S. L., Milly, P. C. D., Nath, M. J., Ploshay, J. J., Ramaswamy, V., Schwarzkopf, M. D., Shevliakova, E., Sirutis, J. J., Soden, B. J., Stern, W. F., Thompson, L. A., Wilson, R. J., Wittenberg, A. T., and Wyman, B. L.: The New GFDL Global Atmosphere and Land Model AM2–LM2: Evaluation with Prescribed SST Simulations, J. Climate, 17, 4641–4673, 2004. a

4. Balsamo, G., Beljaars, A., Scipal, K., Viterbo, P., van den Hurk, B., Hirschi, M., and Betts, A. K.: A revised hydrology for the ECMWF model: Verification from field site to terrestrial water storage and impact in the Integrated Forecast System, J. Hydrometeorol., 10, 623–643, 2009. a

5. Barkstrom, B. R.: The earth radiation budget experiment (ERBE), B. Am. Meteorol. Soc., 65, 1170–1185, 1984. a

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3