A machine learning emulator for Lagrangian particle dispersion model footprints: a case study using NAME
-
Published:2023-04-12
Issue:7
Volume:16
Page:1997-2009
-
ISSN:1991-9603
-
Container-title:Geoscientific Model Development
-
language:en
-
Short-container-title:Geosci. Model Dev.
Author:
Fillola ElenaORCID, Santos-Rodriguez Raul, Manning AlistairORCID, O'Doherty SimonORCID, Rigby MattORCID
Abstract
Abstract. Lagrangian particle dispersion models (LPDMs) have been used extensively to calculate source-receptor relationships (“footprints”) for use in applications such as greenhouse gas (GHG) flux inversions. Because a single model simulation is required for each data point, LPDMs do not scale well to applications with large data sets such as flux inversions using satellite observations. Here, we develop a proof-of-concept machine learning emulator for LPDM footprints over a ∼ 350 km × 230 km region around an observation point, and test it for a range of in situ measurement sites from around the world. As opposed to previous approaches to footprint approximation, it does not require the interpolation or smoothing of footprints produced by the LPDM. Instead, the footprint is emulated entirely from meteorological inputs. This is achieved by independently emulating the footprint magnitude at each grid cell in the domain using gradient-boosted regression trees with a selection of meteorological variables as inputs. The emulator is trained based on footprints from the UK Met Office's Numerical Atmospheric-dispersion Modelling Environment (NAME) for 2014 and 2015, and the emulated footprints are evaluated against hourly NAME output from 2016 and 2020. When compared to CH4 concentration time series generated by NAME, we show that our emulator achieves a mean R-squared score of 0.69 across all sites investigated between 2016 and 2020. The emulator can predict a footprint in around 10 ms, compared to around 10 min for the 3D simulator. This simple and interpretable proof-of-concept emulator demonstrates the potential of machine learning for LPDM emulation.
Funder
Natural Environment Research Council Google Engineering and Physical Sciences Research Council
Publisher
Copernicus GmbH
Reference46 articles.
1. Bergamaschi, P., Karstens, U., Manning, A. J., Saunois, M., Tsuruta, A., Berchet, A., Vermeulen, A. T., Arnold, T., Janssens-Maenhout, G., Hammer, S., Levin, I., Schmidt, M., Ramonet, M., Lopez, M., Lavric, J., Aalto, T., Chen, H., Feist, D. G., Gerbig, C., Haszpra, L., Hermansen, O., Manca, G., Moncrieff, J., Meinhardt, F., Necki, J., Galkowski, M., O'Doherty, S., Paramonova, N., Scheeren, H. A., Steinbacher, M., and Dlugokencky, E.: Inverse modelling of European CH4 emissions during 2006–2012 using different inverse models and reassessed atmospheric observations, Atmos. Chem. Phys., 18, 901–920, https://doi.org/10.5194/acp-18-901-2018, 2018. a 2. Brown, P., Cardenas, L., Choudrie, S., Jones, L., Karagianni, E., MacCarthy, J., Passant, N., Richmond, B., Smith, H., Thistlethwaite, G., Thomson, A., Turtle, L., and Wakeling, D.: UK Greenhouse Gas Inventory, 1990 to 2018: Annual Report for Submission under the Framework Convention on Climate Change, Tech. Rep., Department for Business, Energy & 3. Industrial Strategy, 978-0-9933975-6-1, https://naei.beis.gov.uk/reports/reports?report_id=998 (last access: 28 March 2023), 2020. a 4. Butz, A., Galli, A., Hasekamp, O., Landgraf, J., Tol, P., and Aben, I.: TROPOMI
aboard Sentinel-5 Precursor: Prospective performance of CH4 retrievals for
aerosol and cirrus loaded atmospheres, Remote Sens. Environ., 120,
267–276, https://doi.org/10.1016/j.rse.2011.05.030, 2012. a 5. Cartwright, L., Zammit-Mangion, A., and Deutscher, N. M.: Emulation of greenhouse-gas sensitivities using variational autoencoders, Environmetrics, 34, e2754, https://doi.org/10.1002/env.2754, 2023. a, b
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|