Abstract
Abstract. Atmospheric aerosol has substantial impacts on climate, air
quality and biogeochemical cycles, and its concentrations are highly
variable in space and time. A key variability to evaluate within models that
simulate aerosol is the vertical distribution, which influences atmospheric
heating profiles and aerosol–cloud interactions, to help constrain aerosol
residence time and to better represent the magnitude of simulated impacts. To
ensure a consistent comparison between modeled and observed vertical
distribution of aerosol, we implemented an aerosol lidar simulator within
the Cloud Feedback Model Intercomparison Project (CFMIP) Observation Simulator
Package version 2 (COSPv2). We assessed the attenuated total backscattered
(ATB) signal and the backscatter ratios (SRs) at 532 nm in the U.S.
Department of Energy's Energy Exascale Earth System Model version 1
(E3SMv1). The simulator performs the computations at the same vertical
resolution as the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP),
making use of aerosol optics from the E3SMv1 model as inputs and assuming
that aerosol is uniformly distributed horizontally within each model
grid box. The simulator applies a cloud masking and an aerosol detection
threshold to obtain the ATB and SR profiles that would be observed above
clouds by CALIOP with its aerosol detection capability. Our analysis shows
that the aerosol distribution simulated at a seasonal timescale is generally
in good agreement with observations. Over the Southern Ocean, however, the
model does not produce the SR maximum as observed in the real world.
Comparison between clear-sky and all-sky SRs shows little differences,
indicating that the cloud screening by potentially incorrect model clouds
does not affect the mean aerosol signal averaged over a season. This
indicates that the differences between observed and simulated SR values are
due not to sampling errors, but to deficiencies in the representation of
aerosol in models. Finally, we highlight the need for future applications of lidar observations at multiple wavelengths to provide insights into aerosol properties and distribution and their representation in Earth system models.
Funder
Centre National d’Etudes Spatiales
Office of Science
Reference54 articles.
1. Bonazzola, M.: ATB CALIOP profiles, Zenodo [data set], https://doi.org/10.5281/zenodo.7107232, 2022a.
2. Bonazzola, M.: CALIOP SR profiles, Zenodo [data set], https://doi.org/10.5281/zenodo.7107162, 2022b.
3. Bonazzola, M. and Chepfer, H.: COSPv2.0: Adding lidar aerosol simulator, Zenodo [code], https://doi.org/10.5281/zenodo.7418199, 2022.
4. Cesana, G. and Chepfer, H.: How well do climate models simulate cloud
vertical structure? a comparison between CALIPSO-GOCCP satellite
observations and CMIP5 models, Geophys. Res. Lett., 39, L20803,
https://doi.org/10.1029/2012GL053153, 2012.
5. Cesana, G. and Chepfer, H.: Evaluation of the cloud water phase in a climate
model using CALIPSO-GOCCP, J. Geophys. Res., 118, 7922–7937, https://doi.org/10.1002/jgrd.50376, 2013.