Low salinity as a biosecurity tool for minimizing biofouling on ship sea chests

Author:

de Castro Maria Cecilia T.ORCID,Vance Thomas,Yunnie Anna L. E.,Fileman Timothy W.,Hall-Spencer Jason M.

Abstract

Abstract. Biofouling is a major vector in the transfer of non-native species around the world. Species can be transported on virtually all submerged areas of ships (e.g. hulls, sea chests, propellers) and so antifouling systems are used to reduce fouling. However, with increased regulation of biocides used in antifoulants (e.g. the International Maritime Organization tributyltin ban in 2008), there is a need to find efficient and sustainable alternatives. Here, we tested the hypothesis that short doses of low salinity water could be used to kill fouling species in sea chests. Settlement panels were suspended at 1.5 m depth in a Plymouth marina for 24 months by which time they had developed mature biofouling assemblages. We exposed these panels to three different salinities (7, 20 and 33) for 2 hours using a model sea chest placed in the marina and flushed with freshwater. Fouling organism diversity and abundance were assessed before panels were treated, immediately after treatment, and then 1 week and 1 month later. Some native ascidian Dendrodoa grossularia survived, but all other macrobenthos were killed by the salinity 7 treatment after 1 week. The salinity 20 treatment was not effective at killing the majority of fouling organisms. On the basis of these results, we propose that sea chests be flushed with freshwater for at least 2 hours before ships leave port. This would not cause unnecessary delays or costs and could be a major step forward in improving biosecurity.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Copernicus GmbH

Subject

Cell Biology,Developmental Biology,Embryology,Anatomy

Reference33 articles.

1. Batista, W. R., Neves, M. H. C. B., Coutinho, R., Lopes, C. C., and Lopes, R. S. C.: Glicerofosfolipídios sintéticos para uso como aditivo biocida em tintas anti incrustante, Química Nova, 38, 917–923, 2015.

2. Bremekamp, M.: Tidal Propagation in Plymouth Sound and Tamar Estuary, Master of Science, Faculty of Science and Technology, Plymouth University, Plymouth, UK, 2012.

3. Bullard, S. G., Whitlatch, R. B., and Osman, R. W.: Checking the landing zone: Do invertebrate larvae avoid settling near superior spatial competitors?, Mar. Ecol. Prog. Ser., 280, 239–247, 2004.

4. Bullard, S. G., Lambert, G., Carman, M. R., Byrnes, J., Whitlatch, R. B., Ruiz, G., Miller, R., Harris, L., Valentine, P. C., and Collie, J. S.: The colonial ascidian Didemnum sp. A: current distribution, basic biology and potential threat to marine communities of the northeast and west coasts of North America, J. Exp. Mar. Biol. Ecol., 342, 99–108, 2007.

5. Carlton, J., Reid, D. M., and van Leeuwen, H.: The role of shipping in the introduction of nonindigenous aquatic organisms to the coastal waters of the United States (other than the Great Lakes) and an analysis of control options, Report to US Coast Guard, Washington, D.C., 1995.

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3