Investigating bias in the application of curve fitting programs to atmospheric time series

Author:

Pickers P. A.,Manning A. C.ORCID

Abstract

Abstract. The decomposition of an atmospheric time series into its constituent parts is an essential tool for identifying and isolating variations of interest from a data set, and is widely used to obtain information about sources, sinks and trends in climatically important gases. Such procedures involve fitting appropriate mathematical functions to the data. However, it has been demonstrated that the application of such curve fitting procedures can introduce bias, and thus influence the scientific interpretation of the data sets. We investigate the potential for bias associated with the application of three curve fitting programs, known as HPspline, CCGCRV and STL, using multi-year records of CO2, CH4 and O3 data from three atmospheric monitoring field stations. These three curve fitting programs are widely used within the greenhouse gas measurement community to analyse atmospheric time series, but have not previously been compared extensively. The programs were rigorously tested for their ability to accurately represent the salient features of atmospheric time series, their ability to cope with outliers and gaps in the data, and for sensitivity to the values used for the input parameters needed for each program. We find that the programs can produce significantly different curve fits, and these curve fits can be dependent on the input parameters selected. There are notable differences between the results produced by the three programs for many of the decomposed components of the time series, such as the representation of seasonal cycle characteristics and the long-term (multi-year) growth rate. The programs also vary significantly in their response to gaps and outliers in the time series. Overall, we found that none of the three programs were superior, and that each program had its strengths and weaknesses. Thus, we provide a list of recommendations on the appropriate use of these three curve fitting programs for certain types of data sets, and for certain types of analyses and applications. In addition, we recommend that sensitivity tests are performed in any study using curve fitting programs, to ensure that results are not unduly influenced by the input smoothing parameters chosen. Our findings also have implications for previous studies that have relied on a single curve fitting program to interpret atmospheric time series measurements. This is demonstrated by using two other curve fitting programs to replicate work in Piao et al. (2008) on zero-crossing analyses of atmospheric CO2 seasonal cycles to investigate terrestrial biosphere changes. We highlight the importance of using more than one program, to ensure results are consistent, reproducible, and free from bias.

Funder

Natural Environment Research Council

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3