A research port test bed based on distributed optical sensors and sensor fusion framework for ad hoc situational awareness

Author:

Rüssmeier Nick,Hahn Axel,Nicklas Daniela,Zielinski OliverORCID

Abstract

Abstract. Maritime study sites utilized as a physical experimental test bed for sensor data fusion, communication technology and data stream analysis tools can provide substantial frameworks for design and development of e-navigation technologies. Increasing safety by observation and monitoring of the maritime environment by new technologies meets forward-looking needs to facilitate situational awareness. Further, such test beds offer a solid basis for standardizing new technologies to advance growth by reducing time to market of up-to-date industrial products and technologies. Especially optical sensor technologies are well suited to provide a situational and marine environmental assessment of waterways for (i) online detection of relevant situations, (ii) collection of data for further analysis and (iii) reuse of data, e.g. for training or testing of assistant systems. The test bed set-up has to consider maintainability, flexibility and extensibility for efficient test set-ups. This means that new use cases and applications within the test bed infrastructure, here presented by a research port, can be easily developed and extended by installing new sensors, actuators and software components. Furthermore, the system supports reliable remote communication between onshore and offshore participants. A series of in situ experiments at the research port of Bremerhaven and in other maritime environments were performed, representing applications and scenarios to demonstrate the capability for the proposed system framework and design.

Publisher

Copernicus GmbH

Subject

Electrical and Electronic Engineering,Instrumentation

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3