TSA infrared measurements for stress distribution on car elements

Author:

Marsili RobertoORCID,Rossi Gianluca

Abstract

Abstract. Because of the continuous evolution of the market in terms of quality and performance, the car production industry is being subjected to more and more pressing technological challenges. In this framework the use of an advanced measurement technique such as thermoelasticity allows the engineers to have a fast and reliable tool for experimental investigation, optimization and validation of the finite element method (FEM) of those critical parts, such as parts of car-frame tables (Marsili and Garinei, 2013; Ju et al., 1997). In this work it is shown how the thermoelastic measurement technique can be used to optimize a Ferrari car frame, as a method of experimental investigation and as a technique of validation of numerical models.The measurement technique developed for this purpose is described together with the calibration method used in the test benches normally used for fatigue testing and qualification of this car's components. The results obtained show a very good agreement with FEM models and also the possibility of experimentally identifying the concentration levels of stress in critical parts with a very high spatial resolution and testing the effective geometry and material structure.

Publisher

Copernicus GmbH

Subject

Electrical and Electronic Engineering,Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3