Nocturnal isoprene oxidation over the Northeast United States in summer and its impact on reactive nitrogen partitioning and secondary organic aerosol
-
Published:2009-05-11
Issue:9
Volume:9
Page:3027-3042
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Brown S. S.,deGouw J. A.,Warneke C.,Ryerson T. B.,Dubé W. P.,Atlas E.,Weber R. J.,Peltier R. E.,Neuman J. A.,Roberts J. M.,Swanson A.,Flocke F.,McKeen S. A.,Brioude J.,Sommariva R.,Trainer M.,Fehsenfeld F. C.,Ravishankara A. R.
Abstract
Abstract. Isoprene is the largest single VOC emission to the atmosphere. Although it is primarily oxidized photochemically during daylight hours, late-day emissions that remain in the atmosphere at sunset undergo oxidation by NO3 in regionally polluted areas with large NOx levels. A recent aircraft study examined isoprene and its nocturnal oxidants in a series of night flights across the Northeast US, a region with large emissions of both isoprene and NOx. Substantial amounts of isoprene that were observed after dark were strongly anticorrelated with measured NO3 and were the most important factor determining the lifetime of this radical. The products of photochemical oxidation of isoprene, methyl vinyl ketone and methacrolein, were more uniformly distributed, and served as tracers for the presence of isoprene at sunset, prior to its oxidation by NO3. A determination of the mass of isoprene oxidized in darkness showed it to be a large fraction (>20%) of emitted isoprene. Organic nitrates produced from the NO3+isoprene reaction, though not directly measured, were estimated to account for 2–9% of total reactive nitrogen. The mass of isoprene oxidized by NO3 was comparable to and correlated with the organic aerosol loading for flights with relatively low organic aerosol background. The contribution of nocturnal isoprene oxidation to secondary organic aerosol was determined in the range 1–17%, and isoprene SOA mass derived from NO3 was calculated to exceed that due to OH by approximately 50%.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference80 articles.
1. Aldener, M., Brown, S. S., Stark, H., Williams, E. J., Lerner, B. M., Kuster, W. C., Goldan, P. D., Quinn, P. K., Bates, T. S., Fehsenfeld, F. C., and Ravishankara, A. R.: Reactivity and loss mechanisms of NO3 and N2O$_5$ in a marine environment: results from in-situ measurements during NEAQS 2002, J. Geophys. Res., 111, D23S73, https://doi.org/10.1029/2006JD007252, 2006. 2. Allan, B. J., McFiggans, G., Plane, J. M. C., Coe, H., and McFadyen, G. G.: The nitrate radical in the remote marine boundary layer, J. Geophys. Res., 105, 24191–24204, 2000. 3. Altieri, K. E., Carlton, A. G., Lim, H.-J., Turpin, B. J., and Seitzinger, S. P.: Evidence for oligomer formation in clouds: Reaction of isoprene oxidation products, Environ. Sci. Technol., 40, 4956–4960, 2006. 4. Ambrose, J. L., Mao, H., Mayne, H. R., Stutz, J., Talbot, R., and Sive, B. C.: Nighttime nitrate radical chemistry at Appledore Island, Maine during the 2004 International Consortium for Atmospheric Research on Transport and Transformation, J. Geophys. Res., 112, D21302, https://doi.org/10.1029/2007JD008756, 2007. 5. Apel, E., Riemer, D. D., Hills, A., Baugh, W., Orlando, J., Faloona, I., Tan, D., Brune, W., Lamb, B., Westberg, H., Carroll, M. A., Thornberry, T., and Geron, C.: Measurement and interpretation of isoprene fluxes and isoprene, methacrolein, and methyl vinyl ketone mixing ratios at the PROPHET site during the 1998 Intensive, J. Geophys. Res., 107, 4034, https://doi.org/10.1029/2000JD000225, 2002.
Cited by
119 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|