Maximal Lyapunov exponent variations of volcanic tremor recorded during explosive and effusive activity at Mt Semeru volcano, Indonesia

Author:

Konstantinou K. I.,Perwita C. A.,Maryanto S.,Budianto A.,Hendrasto M.,

Abstract

Abstract. We analyze 25 episodes of volcanic tremor recorded from 22 November until 31 December 2009 at Mt Semeru volcano in order to investigate their spectral and dynamical properties. The overtone frequencies for most of the tremor events indicate a pattern of period-doubling, which is one possible route that can lead a system to chaotic behavior. Exponential divergence of the phase space orbits is a strong indicator of chaos and was quantified by estimating the maximal Lyapunov exponent (MLE) for all tremor events. MLEs were found to vary linearly with the number of frequency overtones present in the tremor signals. This implies that the tremor source at Semeru fluctuates between a quasi-periodic state with few overtone frequencies (2–3) and small MLEs (~0.013), and a chaotic one with more overtones (up to 8) and larger MLEs (up to 0.039). These results agree well with the tremor generation model suggested previously by Julian (1994), which describes wall oscillations of a crack excited by unsteady fluid flow. In this model, as fluid pressure increases, a period-doubling cascade leads to numerous new frequencies and a chaotic tremor signal. The temporal variation of MLEs exhibited significant fluctuations from 23 until 31 December when the eruptive activity shifted from explosive to effusive. Such a situation may reflect variable fluid pressure conditions inside the conduit, where at first magma is accumulated and subsequently is erupted, releasing the buildup of pressure. Our results give further evidence for the role of nonlinear deterministic processes in generating volcanic tremor and call for similar investigations to be conducted in other volcanoes.

Publisher

Copernicus GmbH

Subject

General Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3