Application of synchrotron radiation for measurement of iron red-ox speciation in atmospherically processed aerosols

Author:

Majestic B. J.,Schauer J. J.,Shafer M. M.

Abstract

Abstract. In this study, ambient atmospheric particulate matter (PM) samples were collected using a size-resolved impactor sampler from three urban sites. The purpose of this study is to gain a better understanding of transformations of aerosol-bound iron as it is processed in the atmosphere. Thus, the aerosol samples were artificially aged to represent long-term transport (10 to 40 days) or short-term transport (1 to 10 days) and were measured for iron at several time points. At each time point, iron was measured in each size fraction using three different techniques; 1) inductively coupled plasma-mass spectrometry (ICPMS) for total iron, 2) x-ray absorbance near edge structure (XANES) spectroscopy for the measurement of total Fe(II) and Fe(III), and 3) a wet-chemical method to measure soluble Fe(II) and Fe(III). Prior to aging, the XANES spectroscopy results show that a majority (>60% for each size fraction) of the total iron in the PM is in the form of Fe(III). Fe(III) was shown to be a significant fraction of the soluble iron (sometimes > 50%), but the relative significance of Fe(III) was found to vary depending on the site. Overall, the total soluble iron depended on the sampling site, but values ranged from less than 1% up to about 18% of the total iron. Over the course of the 40 day aging period, we found moderate changes in the relative Fe(II)/Fe(III) content. A slight increase was noted in the coarse (>2.5 μm) fraction and a slight decrease in the 0.25 to 0.5 μm fraction. The soluble fraction generally showed (excepting one day) a decrease of soluble Fe(II) prior to 10 days of aging, followed by a relatively constant concentration. In the short-term transport condition, we found that the sub-micron fraction of soluble Fe(II) spikes at 1 to 3 days of aging, then decreases to near the initial value at around 6 to 10 days. Very little change in soluble Fe(II) was observed in the super-micron fraction. These results show that changes in the soluble iron fraction occur within the lifetime of urban aerosols (1–3 days) and, therefore, atmospheric processing can have a large effect on human exposure to soluble iron.

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3