Validation of the Atmospheric Chemistry Experiment (ACE) version 2.2 temperature using ground-based and space-borne measurements
Author:
Sica R. J.,Izawa M. R. M.,Walker K. A.,Boone C.,Petelina S. V.,Argall P. S.,Bernath P.,Burns G. B.,Catoire V.,Collins R. L.,Daffer W. H.,De Clercq C.,Fan Z. Y.,Firanski B. J.,French W. J. R.,Gerard P.,Gerding M.,Granville J.,Innis J. L.,Keckhut P.,Kerzenmacher T.,Klekociuk A. R.,Kyrö E.,Lambert J. C.,Llewellyn E. J.,Manney G. L.,McDermid I. S.,Mizutani K.,Murayama Y.,Piccolo C.,Raspollini P.,Ridolfi M.,Robert C.,Steinbrecht W.,Strawbridge K. B.,Strong K.,Stübi R.,Thurairajah B.
Abstract
Abstract. An ensemble of space-borne and ground-based instruments has been used to evaluate the quality of the version 2.2 temperature retrievals from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS). The agreement of ACE-FTS temperatures with other sensors is typically better than 2 K in the stratosphere and upper troposphere and 5 K in the lower mesosphere. There is evidence of a systematic high bias (roughly 3–6 K) in the ACE-FTS temperatures in the mesosphere, and a possible systematic low bias (roughly 2 K) in ACE-FTS temperatures near 23 km. Some ACE-FTS temperature profiles exhibit unphysical oscillations, a problem fixed in preliminary comparisons with temperatures derived using the next version of the ACE-FTS retrieval software. Though these relatively large oscillations in temperature can be on the order of 10 K in the mesosphere, retrieved volume mixing ratio profiles typically vary by less than a percent or so. Statistical comparisons suggest these oscillations occur in about 10% of the retrieved profiles. Analysis from a set of coincident lidar measurements suggests that the random error in ACE-FTS version 2.2 temperatures has a lower limit of about ±2 K.
Publisher
Copernicus GmbH
Reference93 articles.
1. Alpers, M., Eixmann, R., Fricke-Begemann, C., Gerding, M., and Hoffner, J.: Temperature lidar measurements from 1 to 105 km altitude using resonance, Rayleigh, and Rotational Raman scattering, Atmos. Chem. Phys., 4, 793–800, 2004. 2. Antikainen, V., Paukkunen, A., and Jauhiainen, H.: Measurement accuracy and repeatability of Vaisala RS90 Radiosonde, Tech. rep., Vaisala Inc., 2002. 3. Argall, P., Sica, R., Bryant, C., Algara-Siller, M., and Schijns, H.: Calibration of the Purple Crow Lidar Vibrational Raman water vapour mixing ratio and temperature measurements, Can. J. Phys., 85, 119–129, \\doi10.1139/P06-091, 2007. 4. Barath, F T., Chavez, M C., Cofield, R E., Flower, D A., Frerking, M A., Gram, M B., Harris, W M., Holden, J R., Jarnot, R F., Kloezeman, W G., Klose, G J., Lau, G K., Loo, M S., Maddison, B J., Mattauch, R J., McKinney, R., Peckham, G E., Pickett, H M., Siebes, G., Solits, F S., Suttie, R A., Tarsala, J A., Waters, J W., and Wilson, W J.: The Upper-Atmosphere Research Satellite Microwave Limb Sounder instrument, J. Geophys. Res., 98, 10 751–17 062, 1993. 5. Baron, P., Merino, F., and Murtagh, D.: Simultaneous retrievals of temperature and volume mixing ratio constituents from nonoxygen Odin submillimeter radiometer bands, Appl. Opt., 40, 6102–6110, 2001.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|