Nitrogen Oxide biogenic emissions from soils: impact on NO<sub>x</sub> and ozone formation in West Africa during AMMA (African Monsoon Multidisciplinary Analysis)
Author:
Delon C.,Reeves C. E.,Stewart D. J.,Serça D.,Dupont R.,Mari C.,Chaboureau J.-P.,Tulet P.
Abstract
Abstract. Nitrogen Oxide biogenic emissions from soils are driven by soil and environmental parameters. The relationship between these parameters and NO fluxes is highly non linear. A new algorithm, based on a neural network calculation, is used to reproduce the NO biogenic emissions in West Africa during the AMMA campaign, in August 2006. It has been coupled in the surface scheme of a coupled chemistry dynamics model to estimate the impact of the NO emissions on NOx and O3 formation in the lower troposphere. Four different simulations on the same domain and at the same period are compared: CTRL run (without soil NO emissions), YL95 run (with NO emissions inventory, at low time and space resolution), SOILNOx run (with NO emissions from neural network) and ALLNOx run (with NO from neural network). The influence of NOx from lightning is assessed, and is limited to the upper troposphere. Compared to parameterisations generally used at the global and regional scales, the neural network parameterisation can give higher NOx (up to +380 ppt) and ozone (up to +7ppb), closer to the ones measured in aircrafts during the AMMA field campaign. The NO emission from soils calculated with neural network responds to changes in soil moisture giving enhanced emissions over the wetted soil, as observed by aircraft measurements after the passing of a convective system, well reproduced by the model. Consecutive enhancement of NOx and ozone is limited to the lowest layers of the atmosphere in modelling, whereas measurements show higher levels above 500 m. This equation allows an immediate response of fluxes to environmental parameters, on the contrary to fixed emission inventories. The annual cycle of emissions from this algorithm will be simulated in a future work
Publisher
Copernicus GmbH
Reference36 articles.
1. Baker B., Bai, J. H., Johnson, C., Cai, Z. T., Li, Q. J., Wang, Y. F., Guenther, A., Greenberg, J., Klinger, L., Geron, C., and Rasmussen, R.: Wet and dry season ecosystem level fluxes of isoprene and monoterpenes from a southeast Asian secondary forest and rubber tree plantation, Atmos. Env. 39, 381–390, 2005. 2. Bechtold, P., Bazile, E. Guichard, F. Mascart, P., and Richard, E.: A mass flux convection scheme for regional and global models, Q J R Meteorol. Soc., 127(573), 869–886, 2001. 3. Bradshaw, J., Davis, D., Grodzinsky, G., Smyth, S., Newell, R., Sandholm, S., and Liu, S.: Observed distributions of nitrogen oxides in the remote free troposphere from the NASA global tropospheric experiment programs, Rev. Geophys., 38(1), 61–116, 2000. 4. Brough, N., Reeves, C. E., Penkett, S. A. Stewart, D. J., Dewey, K., Kent, J., Barjat, H., Monks, P. S., Ziereis, H., Stock, P., Huntrieser, H., and Schlager, H.: Intercomparison of aircraft instruments on board the C-130 and Falcon 20 over southern Germany during EXPORT 2000, Atmos. Chem. Phys., 3, 1–12, 2003. 5. Butterbach-Bahl, K, Stange, F., Papen, H., and Li, C: Regional inventory of nitric oxide and nitrous axide emissions for forest soils of southeast Germany using the biogeochemical model PnET-N-DNDC, J. Geophys. Res., 106, 34 155–34 166, 2001.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|