Nitrogen Oxide biogenic emissions from soils: impact on NO<sub>x</sub> and ozone formation in West Africa during AMMA (African Monsoon Multidisciplinary Analysis)

Author:

Delon C.,Reeves C. E.,Stewart D. J.,Serça D.,Dupont R.,Mari C.,Chaboureau J.-P.,Tulet P.

Abstract

Abstract. Nitrogen Oxide biogenic emissions from soils are driven by soil and environmental parameters. The relationship between these parameters and NO fluxes is highly non linear. A new algorithm, based on a neural network calculation, is used to reproduce the NO biogenic emissions in West Africa during the AMMA campaign, in August 2006. It has been coupled in the surface scheme of a coupled chemistry dynamics model to estimate the impact of the NO emissions on NOx and O3 formation in the lower troposphere. Four different simulations on the same domain and at the same period are compared: CTRL run (without soil NO emissions), YL95 run (with NO emissions inventory, at low time and space resolution), SOILNOx run (with NO emissions from neural network) and ALLNOx run (with NO from neural network). The influence of NOx from lightning is assessed, and is limited to the upper troposphere. Compared to parameterisations generally used at the global and regional scales, the neural network parameterisation can give higher NOx (up to +380 ppt) and ozone (up to +7ppb), closer to the ones measured in aircrafts during the AMMA field campaign. The NO emission from soils calculated with neural network responds to changes in soil moisture giving enhanced emissions over the wetted soil, as observed by aircraft measurements after the passing of a convective system, well reproduced by the model. Consecutive enhancement of NOx and ozone is limited to the lowest layers of the atmosphere in modelling, whereas measurements show higher levels above 500 m. This equation allows an immediate response of fluxes to environmental parameters, on the contrary to fixed emission inventories. The annual cycle of emissions from this algorithm will be simulated in a future work

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3