Historical records of coastal eutrophication-induced hypoxia
-
Published:2009-08-21
Issue:8
Volume:6
Page:1707-1745
-
ISSN:1726-4189
-
Container-title:Biogeosciences
-
language:en
-
Short-container-title:Biogeosciences
Author:
Gooday A. J.,Jorissen F.,Levin L. A.,Middelburg J. J.,Naqvi S. W. A.,Rabalais N. N.,Scranton M.,Zhang J.
Abstract
Abstract. Under certain conditions, sediment cores from coastal settings subject to hypoxia can yield records of environmental changes over time scales ranging from decades to millennia, sometimes with a resolution of as little as a few years. A variety of biological and geochemical indicators (proxies) derived from such cores have been used to reconstruct the development of eutrophication and hypoxic conditions over time. Those based on (1) the preserved remains of benthic organisms (mainly foraminiferans and ostracods), (2) sedimentary features (e.g. laminations) and (3) sediment chemistry and mineralogy (e.g. presence of sulphides and redox-sensitive trace elements) reflect conditions at or close to the seafloor. Those based on (4) the preserved remains of planktonic organisms (mainly diatoms and dinoflagellates), (5) pigments and lipid biomarkers derived from prokaryotes and eukaryotes and (6) organic C, N and their stable isotope ratios reflect conditions in the water column. However, the interpretation of these indicators is not straightforward. A central difficulty concerns the fact that hypoxia is strongly correlated with, and often induced by, organic enrichment caused by eutrophication, making it difficult to separate the effects of these phenomena in sediment records. The problem is compounded by the enhanced preservation in anoxic and hypoxic sediments of organic microfossils and biomarkers indicating eutrophication. The use of hypoxia-specific proxies, such as the trace metals molybdenum and rhenium and the bacterial biomarker isorenieratene, together with multi-proxy approaches, may provide a way forward. All proxies of bottom-water hypoxia are basically qualitative; their quantification presents a major challenge to which there is currently no satisfactory solution. Finally, it is important to separate the effects of natural ecosystem variability from anthropogenic effects. Despite these problems, in the absence of historical data for dissolved oxygen concentrations, the analysis of sediment cores can provide plausible reconstructions of the temporal development of human-induced hypoxia, and associated eutrophication, in vulnerable coastal environments.
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics
Reference298 articles.
1. Adelson, J. M., Helz, G. R., and Miller, C. V.: Reconstructing the rise of coastal anoxia: molybdenum in Chesapeake Bay sediments, Geochim. Cosmochim. Ac., 65, 237–252, 2001. 2. Agnihotri, R., Kurian, S., Fernandes, M., Reshma, K., D'Souza,W., and Naqvi, S. W. A.: Variability of subsurface denitrification and surface productivity in the coastal eastern Arabian Sea over the past seven centuries, Holocene, 18, 755–764, 2008. 3. Altabet, M. A. and Francois, R.: Sedimentary isotopic ratio as a recorder for surface ocean nitrate utilization, Global Biogeochem. Cy., 8, 103–116, 1994. 4. Alvarez Zarikian, C. A., Blackwelder, P. L., Hood, T., Nelsen, T. A., and Featherstone, C.: Ostracods as indicators of natural and anthropogenically induced changes in coastal marine environments, in: Coasts at the Millennium, Proceedings of the 17th International Conference of The Coastal Society, Portland, OR USA, July 9–12, 896–905, 2000. 5. Alve, E.: Variations in estuarine foraminiferal biofacies with diminishing oxygen conditions in Drammensfjord, SE Norway, in: Paleoecology, Biostratigraphy and Taxonomy of Agglutinated Foraminifera, edited by: Hemleben, C., Kaminski, M., Kuhnt, W., and Scott, D. B., Kluwer, Dordrecht, The Netherlands, 661–694, 1990.
Cited by
138 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|