Response of the auroral electrojet indices to abrupt southward IMF turnings

Author:

Gjerloev J. W.,Hoffman R. A.,Ohtani S.,Weygand J.,Barnes R.

Abstract

Abstract. We present results from a study of the behavior of the auroral electrojet indices following abrupt southward turnings of the IMF Bz. The auroral electrojet indices are calculated from observations made by more than 100 ground based stations provided by the SuperMAG collaborators. Based on three simple criteria we selected 73 events. In each event the interval of analysis started at the time of the IMF Bz southward turning and ended 45 minutes later or at the onset of any abrupt energy unloading event in the magnetosphere, regardless of size. We refer to this period as the "pre-unloading phase". To isolate the dependence of the auroral electrojets on the solar induced ionospheric conductivity during this phase we separated the standard AU/AL indices into two new sets of indices defined by the upper and lower envelope of the north-south component for all sunlit stations (AUs/ALs) and for all stations in darkness (AUd/ALd). Based on events and statistical analyses we can conclude that following a southward turning of the IMF Bz the AUd/ALd indices show no measurable response while the AUs/ALs indices clearly intensify. The intensifications of AUs/ALs are dependent on the intensity of the solar wind driver (as measured by IMF Bz or the Akasofu ε parameter). The lack of AUd/ALd response does not depend on the intensity of any subsequent substorm. We find that during these isolated events the ionospheric current system is primarily confined to the sunlit ionosphere. This truncated version of the classical global DP-2 current system suggests that auroral electrojet continuity is not maintained across the terminator. Because of its conductivity dependence on the solar zenith angle, this truncated global current pattern is expected to be highly dependent on UT and season and thus can be asymmetric between hemispheres. Thus we argue that the global two-cell DP-2 current system is not a consequence only of a southward turning of the IMF but requires also the reduction of the conductivity gradient at the terminator.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3